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CKM Matrix : o
Vaal Vsl Vuol|  [0.97401(11) ©.22650(48) ) 0.00361(11)
Veal Ves| [Ven!| = |0.22636(48) 0.97320(11) 0.04053(83)
Vial Vis| [Vip| [0.00854(23) 0.03978(82) 0.99917(04)

* SM requires unitarity: |Vya|* + [Vius|? + [Vup|* = 1 P0G Review of partice physics 2020

* |Vus| can be constrained by

e (Semi-) leptonic Kaon decays
* Semi-leptonic hyperon decays

* Transition matrix element for semi-leptonic hyperon decay:

C@: “L v [ (B Jury,~°s| B) < (B'|tvy,s|B)DIv* (1 — v°)u,

From experimental Axial-vector Vector
decay widths

* Lattice QCD determinations can improve on phenomenological form
factor values



How Does Lattice QCD Work?

* Discretize space-time | |
. Quarks on the lattice sites \ 1Py |
* Gauge fields on the links i *# —

* Use Monte Carlo sampling to generate gauge fields
22 r

* Calculate expectation value by averaging over Gauge 1]
configurations ol T

(Q|0Q) = /DwaDAC’)eZS !

Discretise Z W{O} )

Euchdeanlse N

* Then account for the systematics (finite volume, lattice
spacing, larger-than-physical pion mass)



What can we calculate with Lattice QCD?

C?Pt(x,0) =
Nucleon Mass 1: )
r,t) X
* Creation operator which couples to < { \XN( ’ 2 ‘XN( ), }>
nucleons: ! !
° W||| Couple to any state W|th the same Annihilate nUC|e0n Create nUC|e0n at
quantum numbers at the sink the source
* The spectral decomposition of the 2pt B
. . =Y A Bl
correlation function includes a tower C(@) Z_% i€
of states with increasing energies -
* Effective energy of the correlator E.¢=1In ( C(t) )
asymptotes towards the ground state C(t+1)

>0
energy 20, g



What can we calculate with Lattice QCD?

Nucleon Mass C20t (1) — ZAie—Ei(ﬁ)t

* Calculate correlation function on i—0
each gauge configuration

* Use bootstrap resampling to get

uncertainties 1.0
* Fit the correlator using exponential. 0.8}
. N
function ansatz ol ® |
L] L] . £ ) B .
* Signal to Noise ratio decreases at o | L R .
: 0.4} e T EEE
large time | Ftirg
* Ground state dominates signal 0.2 2= 0.07 |
only at large times —— — ]
. y & O'OO 5) 10 15 20 25
* Signal strength decreases at large t

momenta



What can we calculate with Lattice QCD?

How can we deal with these issues: Cgpt(t) = Age ™ Fot
* Include e-xuted statgs m_the ansatz 012291‘/ (t) _ Aoe_EOt + Ale_Elt
* Can fit from earlier time
* Use multiple operators to improve
overlap with the ground state Baryon mass, (k. £2) = (0.121040, 0.121040), 32x64
* Signal improves I M 014
* Easier to filter out excited states - = | B 012
* Weighted averaging over multiple fit 0,10
ranges grmz- ;[ I.+ i } . } '.! -0.08%
* Reduces effects of researcher's fit 0401 - 1 006~
window choice 0.381 F0.04
0.36. 0.02

0.00

A 6 8 10 19 14 16 18

Cmin



What can we calculate with Lattice QCD?

_ CoPL(t) =
Baryon Matrix Elements 5
To.t r1.7) ¥Yn(0.0 >
* Include a current insertion operator <‘XN( 2 ,) (@1, 7) >‘<N( ’ ,)
between creation and annihilation T J
Annihilate Insert current Create nucleon
nucleon at the at the source
sink
CoPt(t) =
Y e Pt ErT(QIx(0)|B') (B'|O|B) (B|x(0)|Q)
; Y |

0

: . >
Two towers of exponentially Form factors are contained \/
decaying excited states in this matrix element




Three-point functions

On the lattice:
e Use a sequential source

e Fix the sink time and momentum




Three-point functions

On the lattice:
* Use a sequential source
e Fix the sink time and momentum

* Invert from the sequential source at
the sink to the operator insertion




Three-point functions

On the lattice:
* Use a sequential source
e Fix the sink time and momentum

* Invert from the sequential source at
the sink to the operator insertion

* Insert the current operator and T

connect it with the source 0 \:/ t




Three-point functions

* Advantages:
 Allows for operator choice after all the inversions
* Free choice of operator, momentum transfer

* Disadvantages:

* It has two time windows for which excited states need to be
controlled

* Requires separate inversions for
* Every sink momentum
* Every source-sink time separation
* Every polarisation



Feynman-Hellmann method

1. Modify the QCD action with an operator

L — L+ O

2. Calculate the energy spectrum with the modified action
3. Relate the change in energy to the matrix element:

OF x

— X |O|X
ox | x (xlox)

Connected contributions => Invert the new fermion matrix
Disconnected contributions => generate new gauge configurations



Non-forward Feynman-Hellmann method

1. Modify the QCD action with an operator including momentum

L— L+ A\ (éiq'm e_iq'””) @,
2. Calculate energy spectrum
3. Relate change in energy to the matrix element

OEx (p’)
O\

X (X ()]0 X (p))

This requires Breit frame kinematics: £x (ﬁ/) = Ex(p)



Non-forward Feynman-Hellmann method results

Matrix elements up to high momentum are accessible:

GE.p

1.2

1.0+
0.8 1
0.6
0.4 1
0.2 1

0.0

—0.2

®  Weighted average
¥ FH 1 exp [Chambers 2017]
3-pt. functions (2 exp fit)

0.6 1

0.4

GE,p/GM,p

—0.27
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0
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B FH Weighted average
¥  FH 1 exp [Chambers 2017
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IIEHE]:{

Q*[GeV]

hep-lat [2202.01366]




Transition Form Factors

(BVIBY = 7 1B () + oy L2 (@) PP(Q)
g g " Mp + Mp "Mp + Mp

\ ;
! \ }

f,(Q?=0) can be used to Y | |
constrain V, element =0 if B=B
of the CKM matrix

guasi-degenerate

Breit frame condition cannot be 4. states which are states must be
well separated

icfi i qguasi-degenerate in
satisfied as easily anymore gy e " from any other

=> Consider quasi-degenerate states

energy states

EBr(ﬁr):E+€r; 7"21)...,613



Feynman-Hellmann For Quasi-Degenerate Energies

Consider a two-point function with
a Hamiltonian which includes a
perturbing operator:

!

Transfer matrix A _ _—Hx\(©Q
with perturbed SA(CD — ¢

Hamiltonian: R R ~
Insert two complete sets-of-states Hx(q) = Ho — AO(q)

into the two-point function:

Crmp (R0 = 3 0 AOIB()IX ) (XEISA@) 1Y (), (Y () BO) o)
X(Px) Y (Py)

|
We want this




Dyson expansion <X(ﬁX)Y(ﬁy)>

Expand the transfer matrix for small

)\: 2 = 3 t 2 N~ Nl
values of ¢~ (Ho=XO)t _ —Hot )\/ dt'e—Ho(t—t") A ,—Hot
0
+ A\?(compton terms)

Consider the separate pieces:
(B,|e- OBy = "Bt (5. 4 (D, +O(2))

(Br\e‘(ﬁo—)\é?)t‘y> _ eEt()\(BT|O|Y)+O(2))+ more

Ey — Ep. damped

D, is defined as:

Drs(M€) = —€ebys + A (B (5O Bs (7))



Diagonalisation of D,s(\,€) = —ecbrs + A (B, (5)|O(@)|Bs(7s))

We can diagonalise the matrix D, such that:

dg
D,, = #()e() () *

1=1

This allows us to write the two-point function
as:

(i) (= =
Csp(tip, ) = Zﬂggrg(p,Q)e R

With the energies being determined by the
eigenvalues

ED(5,q) = E(B,¢) - 1D (e, \i5,§), i=1,....ds

The problem is now a Generalized Eigenvalue Problem win B, B, space to find E{"(5.4)



>." — n Transition

e Consider the action: S:Sg+f(u,s)( _Z;Er, _gT )( “ )+dedd

where T (z,y;q) = ve'7%5,.,

* Construct a matrix of correlation functions:

Crppy — (CAEE CAEN)
CANS CANN ) 5ip

 After solving the GEVP, the energies are related to the matrix element

ABE sy = \/(EN@ — Mz)® 44X | <N(q>|m4s\z(6)>|2



>." — n Transition

Copp — (C)\EZ CAEN)
CaNs CANN ) 5ip

e Each correlator is built from a Green's function:
Guu Gus . (M_l)uu (M_l)us
Gsu Gss - (M_l)su (M_l)ss

* \Where: Gluw) (1 — AQD;ITD;175ﬁW5)_1D;1 Problem: inversion within
G(ss) _ (1 _ )\2D;1"Y5TT’}/5D;1T)_1D;1 anotherinversion

G(us) _ )\D;lTG(SS) ,
G(su) _ )\Dgl,YE’TT,YE)G(uu)



Iterative Green's functions (

* We can expand the Green's
functions for small lambda

(vu)  _ -1 2 -1 -1 t (uw)
* Will give the exact result as n Gonz = D+ ADT DT 1560, 7
goes to infinity. GY, = D'+ XD TID TG
* We will consider up to order O(A\*)
G = AD TGS

. . (su) . (uu)
* This allows changing the value Gontly = ADS 5T y5Go,
of lambda after the inversions!



Iterative Green's functions ( G G ) 26

3 Gss
For example, take O(A”) :

Gy = ADITDI + N DT D 5T s D, TS

G - TN NS



Kinematics

* Choose the Sigma to be at rest and change the momentum of the nucleon
* Choose the operator to be the vector current 74

* For hyperons with quasi-degenerate energies the shift due to a
perturbation in the action lambda is

AE}\ZN p— \/(EN(q) — ]\42)2 —+ 4)\2 <N(d>‘ﬂ748|2(6)> i

* When the energy of the nucleon equals the mass of the Sigma, this will be
linear in lambda.

* How far from the degenerate energy point can we make this work?
« At Q%=07?




(Partially) Twisted Boundary Conditions

« Momentum on the lattice is quantised Q* = —(Mx, - Ex(§))* + G
* how do we get to the energy-degenerate point?

* Twisted boundary conditions add a complex phase to the boundary conditions
* Gives lattice correlators any momentum

q(Z + Nyé;,t) = e¥iq(7, )

0.52r g;i?”
0.50F
* Q?points of interest: 0.48}

* Degenerate energy En(q) = My 9 (.46

e Q2 =0 0.4l \

2 N En(@) = Ms




Lattice details

323x64 lattice size

Lattice spacing a=0.074fm

N:=2 + 1, O(a)-improved clover Wilson fermions

Up and down quark are degenerate

O(500) configurations used for each choice of momentum

run #  Oy/w G2 En My, - Exy  Q?[GeV?]
1 0.0 0.0 0424(11) 0.0366(33)  -0.0095
2 0.448 | 0.0019 0.429(10)  0.0351(35)
3 1] 0.0006 0.437(10) 00301( 2)  0.0620
4 1.6 | 0.0247 0.450(12) 0.0182(57)  0.1732
5 2.06|0.0408 0.462(12) C0.0030(69)  0.2901
6 2.25|0.0488 0.469(13) -0.0037(78)  0.3472




Generalized EigenValue Problem (GEVP) 2

* Diagonalise the matrix

C ¥ C SN
C)\B/B - ( A A )
B’'B

Canss OannN 025 ——r

. . ) I oW

* Gives two eigenvectors and eigenvalues 020 @ o

* Eigenvalues related to the energy §oon
0.15} i

e Use the eigenvectors to project out two

correlation functions: 0.10}

AE g

COt) = DOy ()u® | 0=+

 Take the ratio of the two correlators and fit to
the energy shift AE.

15 20

-
wth
=1l
c.

_ Ct0,) 5
a0, - SO0 0 s t




GEVP Stability

AE(ct,c7)

AFE

Sta

0.01¢

0.00

—0.01¢

—0.02¢

—0.03¢

31

GEVP depends on two parameters (t, & At):

ble under GEVP parameters? C;l (tO)CA (tO 4+ At)e(z) __ C(z)e(z)

Do the GEVP for many value of t; and At

Calculatethe value of AE(c*,c’) from the eigenvalues
Compare with AE from the fit to the ratio of correlators
For each At we show results from t,=1-8

=
| I

Ground state saturated:

0.8¢ %

0.6F %%
155

ozl T T T i
it
0.4f LIRS

2 44
—— Xdof =090
V206
0.2k Xdof = 0.64
fi - O\, state 1
o O, state 2

1=

Eeﬁ'

0.0

Result from GEVP are stablein
range At>4 and t;26




AE as a function of A when En(q) = Mx

ey
Oy (0,9) >0 K500y

Ri(t;0,9) = q
C(t:0,7)

* |terative Method: higher orders

in lambda increase the range 0.10 :
over which our approximation O\)
holds 0.08+ O(\2)
We want to fit in the regi OX)

e want to fit in the region 006l o)

where the dependence is linear

* Choose the region where the L<Sl 0.04}
two highest order results agree
* O(N3) and O(X) agree up 0.02F
to A =0.05
0.00fF

: 0.00 00l 002 003 004 0.05
AExsn = \/(EN(J) — Ms)® + 4X% | (N(q)|uvas|2(0)) A



Fitting the slope of AE

Consider the ratio at two values
of A close to each other.

R)\—HS)\(t) t(:>:>><0 6_(AE)\—|—5)\_AE)\)t

R\(t)

This cancels out more
correlations

Fit to get the slope in A

Relate the slope to the matrix
element

1.2¢

L.O}

0.8F

0.6f

0.4r

0.27

0.0

AE, = \/(Ex(q) = Ms)? + 432 (ME)?

lat

B (AEyi5 — AE))/26)
(ME),,
Chosen point
. { b ¥ ¥ ¥
I PR ¥ ;
|
0.00 0.01 0.02 0.03 0.04




Does the method work at Q%=07 2

0.150
o O(AY)
The expansion in A holds for a smaller range: 0.125} %
. O /\3
O(») and O()*) diverge around A =0.03 0.100f OEA4;
5 0.0757
< |
0.050f
L2y 0.025F
: LI
L0 i 0 L tos ' 0.000
0.8 . 0.00 0.0l 002 003 004 005
L] A
0.6' E
0.4l <= Fitting to the slope at small A still
- ]
B (ABys — AE)/200 produces stable results
0.2 (ME),,
. Chosen point 5

0.0

000 001 002 003  0.04 ABxsy = \/(EN(CY) — Mz)? + 402 | (N (@) |15 2(0))|



How does this compare to three-point function results?

3-p0int function Ratio of 3pt and 2pt functions at Q=0
* Same # of gauge configurations tsep = 10 tsep = 13 tsep = 16
 Both >~ — n and opposite 1.160f - :

3-point functions used.
* 3 source-sink separations: =
. t=10,13,16 (0.74, 0.96, 1.18 = = | &%
fm) 11453,,; ,,,,, % ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* Fit ansatz includes all three t,,
and the first excited state

1.155¢ : F 77 R

tsep ’ 7_)

The dependence on t,, has not been eliminated:
=> Has the ground state been saturated?



How does this compare to three-point function results?

1.5—
Matrix element as a function of Q2: . . ceynman-Helimans
%:: >+ N
- E N — X
3-point function results at non-zero Q? T% L0y .
only used one transition direction &3
& |
=3 |
T057 )
| o
S
0.0 0.0 0.2 0.4

QQ [GeV?]



How does this compare to three-point function results?
Compare two Q2 points more closely: P § Formm s
f s v
1.0}
| . :
08 P g pggun® =
2 | 0700 0.2 0.4
Z Q*[GeV?]
t, 0.6
s
- Wl =10
0.4r teep = 13
| teep = 16
i FH
R (T T | R
&@Q;@Q:@“Q/ K



Avoided level crossing ”

A=0 A =0.029

Nucleon ¥ State 1 (A =0.029)
5O L L
0.52 Sigma 0.52 ¥ State 2 (A = 0.029)

N i 1 A

M 0.46] 9 0.46 { }
0.44 0.44} }
0.42r 0.42} %
0.40} 0.40-H
000 00T 002 003 004 005 0.00 001 002 003 004 005



Eigenvectors 5

* The eigenvectors of the GEVP show 1.0
the mixing between the states as a €72 (A = 0.025)
. (H)2 (y
function of g2 0.3l & les”? (A =0025)
0 6 Fi\
ol %; -
(+) ) %
zE — [ & 0.4
o(F)
2 A
0.2t &=
V0500 0.02 0.04



Conclusion

* The Feynman-Hellman method can be used to calculate hyperon
transition form factors

* Only requires one Euclidean time parameter to be optimised to
extract the ground state.

* Using multiple different operators will allow for the extraction of
separate form facors

* Method should be tested on lattices with larger splittings between
the light and strange quarks




