

Lattice QCD calculation of Hyperon transition form factors using the Feynman-Hellmann method.

Mischa Batelaan

QCDSF-UKQCD-CSSM collaboration

The University of Adelaide

Jefferson Lab Theory Seminar 31 October 2022

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = \begin{bmatrix} 0.97401(11) & 0.22650(48) & 0.00361(11) \\ 0.22636(48) & 0.97320(11) & 0.04053(83) \\ 0.00854(23) & 0.03978(82) & 0.99917(04) \end{bmatrix}$$

• SM requires unitarity: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

PDG Review of particle physics 2020

- |Vus| can be constrained by
 - (Semi-) leptonic Kaon decays
 - Semi-leptonic hyperon decays
- Transition matrix element for semi-leptonic hyperon decay:

$$T = \frac{G_F}{\sqrt{2}} V_{us} \left[\langle B' | \bar{u} \gamma_\mu \gamma^5 s | B \rangle - \langle B' | \bar{u} \gamma_\mu s | B \rangle \right] \bar{l} \gamma^\mu (1 - \gamma^5) \nu_l$$
 From experimental decay widths

 Lattice QCD determinations can improve on phenomenological form factor values

How Does Lattice QCD Work?

- Discretize space-time
 - Quarks on the lattice sites
 - Gauge fields on the links
- Use Monte Carlo sampling to generate gauge fields
- Calculate expectation value by averaging over Gauge configurations

$$\langle \Omega | \mathcal{O} | \Omega \rangle = \frac{1}{Z} \int D\bar{\psi} \, D\psi \, DA \, \mathcal{O} \, e^{iS}$$

$$\xrightarrow{\text{Discretise}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{W}\{\mathcal{O}\} (U_i)$$

 Then account for the systematics (finite volume, lattice spacing, larger-than-physical pion mass)

Nucleon Mass

- Creation operator which couples to nucleons:
 - Will couple to any state with the same quantum numbers
- The spectral decomposition of the correlation function includes a tower of states with increasing energies
- Effective energy of the correlator asymptotes towards the ground state energy

$$C^{2pt}(x,0) =$$

$$\langle T\{ \chi_N(x,t) \ \bar{\chi}_N(0) \} \rangle$$

Annihilate nucleon Create nucleon at at the sink the source

$$C^{2pt}(t) = \sum_{i=0}^{\infty} A_i e^{-E_i(\vec{p})t}$$

$$E_{\text{eff}} = \ln \left(\frac{C(t)}{C(t+1)} \right)$$

$$\xrightarrow{t \gg 0} E_0$$

What can we calculate with Lattice QCD?

Nucleon Mass

- Calculate correlation function on each gauge configuration
- Use bootstrap resampling to get uncertainties
- Fit the correlator using exponential, function ansatz
 - Signal to Noise ratio decreases at large time
 - Ground state dominates signal only at large times
 - Signal strength decreases at large momenta

$$C^{2pt}(t) = \sum_{i=0}^{\infty} A_i e^{-E_i(\vec{p})t}$$

How can we deal with these issues:

- Include excited states in the ansatz
 - Can fit from earlier time
- Use multiple operators to improve overlap with the ground state
 - Signal improves
 - Easier to filter out excited states
- Weighted averaging over multiple fit ranges
 - Reduces effects of researcher's fit window choice

$$C_0^{2pt}(t) = A_0 e^{-E_0 t}$$

$$C_1^{2pt}(t) = A_0 e^{-E_0 t} + A_1 e^{-E_1 t}$$

Baryon Matrix Elements

 Include a current insertion operator between creation and annihilation

$$C^{3pt}(t)=$$

$$\left\langle \begin{array}{ccc} \chi_N(x_2,t) & \hat{\mathcal{O}}(x_1, au) & \bar{\chi}_N(0,0) \\ & \text{Annihilate} & \text{Insert current} & \text{Create nucleon at the source sink} \end{array} \right.$$

$$\sum_{B,B'} e^{-E_{B'}(t-\tau)} e^{-E_B\tau} \langle \Omega | \chi(0) | B' \rangle \ \langle B' | \mathcal{O} | B \rangle \ \langle B | \bar{\chi}(0) | \Omega \rangle$$
 Two towers of exponentially decaying excited states Form factors are contained in this matrix element

On the lattice:

- Use a sequential source
- Fix the sink time and momentum

On the lattice:

- Use a sequential source
- Fix the sink time and momentum
- Invert from the sequential source at the sink to the operator insertion

On the lattice:

- Use a sequential source
- Fix the sink time and momentum
- Invert from the sequential source at the sink to the operator insertion
- Insert the current operator and connect it with the source

- Advantages:
 - Allows for operator choice after all the inversions
 - Free choice of operator, momentum transfer
- Disadvantages:
 - It has two time windows for which excited states need to be controlled
 - Requires separate inversions for
 - Every sink momentum
 - Every source-sink time separation
 - Every polarisation

Feynman-Hellmann method

1. Modify the QCD action with an operator

$$\mathcal{L} \to \mathcal{L} + \lambda \mathcal{O}$$

- 2. Calculate the energy spectrum with the modified action
- 3. Relate the change in energy to the matrix element:

$$\left. \frac{\partial E_X}{\partial \lambda} \right|_{\lambda=0} \propto \langle X | \mathcal{O} | X \rangle$$

Connected contributions => Invert the new fermion matrix

Disconnected contributions => generate new gauge configurations

Non-forward Feynman-Hellmann method

1. Modify the QCD action with an operator including momentum

$$\mathcal{L} \to \mathcal{L} + \lambda \left(e^{i\vec{q}\cdot\vec{x}} + e^{-i\vec{q}\cdot\vec{x}} \right) \mathcal{O}$$

- 2. Calculate energy spectrum
- 3. Relate change in energy to the matrix element

$$\left. \frac{\partial E_X(\vec{p}')}{\partial \lambda} \right|_{\lambda=0} \propto \langle X(p') | \mathcal{O} | X(p) \rangle$$

This requires Breit frame kinematics: $E_X(\vec{p}') = E_X(\vec{p})$

Non-forward Feynman-Hellmann method results

Matrix elements up to high momentum are accessible:

hep-lat [2202.01366]

$$\langle B'|\mathcal{V}_{\mu}|B\rangle = \gamma_{\mu}f_1^{BB'}(Q^2) + \sigma_{\mu\nu}q_{\nu}\frac{f_2^{BB'}(Q^2)}{M_B+M_{B'}} - iq_{\mu}\frac{f_3^{BB'}(Q^2)}{M_B+M_{B'}}$$

$$f_{\rm 1}({\rm Q^2=0}) \ {\rm can\ be\ used\ to\ constrain\ V_{\rm us}\ element} = 0 \ {\rm if\ B=B'}$$

Breit frame condition cannot be satisfied as easily anymore

of the CKM matrix

=> Consider quasi-degenerate energy states

$$E_{B_r}(\vec{p}_r) = \bar{E} + \epsilon_r, \qquad r = 1, \dots, d_S$$

ds states which are quasi-degenerate in energy:

quasi-degenerate states must be well separated from any other states

Feynman-Hellmann For Quasi-Degenerate Energies

Consider a two-point function with a Hamiltonian which includes a perturbing operator:

$$C_{\lambda B'B}(t; \vec{p}, \vec{q}) = {}_{\lambda} \langle 0 | \hat{\vec{B}}'(0; \vec{p}') \hat{S}_{\lambda}(\vec{q})^{t} \hat{\vec{B}}(0, \vec{0}) \rangle |0\rangle_{\lambda}$$

Transfer matrix with perturbed Hamiltonian:

$$\hat{S}_{\lambda}(\vec{q}) = e^{-\hat{H}_{\lambda}(\vec{q})}$$

$$\hat{H}_{\lambda}(\vec{q}) = \hat{H}_0 - \lambda \tilde{\hat{\mathcal{O}}}(\vec{q})$$

Insert two complete sets-of-states into the two-point function:

$$C_{\lambda B'B}(t;\vec{p},\vec{q}) = \sum_{X(\vec{p}_X)} \sum_{Y(\vec{p}_Y)} {}_{\lambda} \left\langle 0 | \hat{\vec{B}}'(\vec{p}') | X(\vec{p}_X) \right\rangle \left\langle X(\vec{p}_X) | \hat{S}_{\lambda}(\vec{q})^t | Y(\vec{p}_Y) \right\rangle \left\langle Y(\vec{p}_Y) | \hat{\vec{B}}(\vec{0}) | 0 \right\rangle_{\lambda}$$
 We want this

Dyson expansion

Expand the transfer matrix for small

values of λ :

$$e^{-(\hat{H}_0 - \lambda \hat{\mathcal{O}})t} = e^{-\hat{H}_0 t} + \lambda \int_0^t dt' e^{-\hat{H}_0 (t - t')} \hat{\mathcal{O}} e^{-\hat{H}_0 t'} + \lambda^2 \text{(compton terms)}$$

Consider the separate pieces:

$$\langle B_r | e^{-(\hat{H}_0 - \lambda \hat{\tilde{\mathcal{O}}})t} | B_s \rangle = e^{-\bar{E}t} \left(\delta_{rs} + t D_{rs} + O(2) \right)$$

$$\langle B_r | e^{-(\hat{H}_0 - \lambda \hat{\tilde{\mathcal{O}}})t} | Y \rangle = e^{-\bar{E}t} \left(\lambda \frac{\langle B_r | \hat{\tilde{\mathcal{O}}} | Y \rangle}{E_Y - E_{B_r}} + O(2) \right) + \text{more damped}$$

 D_{rs} is defined as:

$$D_{rs}(\lambda, \epsilon) = -\epsilon_e \delta_{rs} + \lambda \langle B_r(\vec{p}_r) | \hat{\mathcal{O}}(\vec{q}) | B_s(\vec{p}_s) \rangle$$

Diagonalisation of $D_{rs}(\lambda, \epsilon) = -\epsilon_e \delta_{rs} + \lambda \langle B_r(\vec{p}_r) | \hat{\tilde{\mathcal{O}}}(\vec{q}) | B_s(\vec{p}_s) \rangle$

We can diagonalise the matrix D, such that:

$$D_{rs} = \sum_{i=1}^{d_S} \mu^{(i)} e_r^{(i)} e_s^{(i)} *$$

This allows us to write the two-point function

as:

$$C_{\lambda B'B}(t; \vec{p}, \vec{q}) = \sum_{i=1}^{d_S} A_{\lambda B'B}^{(i)}(\vec{p}, \vec{q}) e^{-E_{\lambda}^{(i)}(\vec{p}, \vec{q})t}$$

With the energies being determined by the eigenvalues

$$E_{\lambda}^{(i)}(\vec{p},\vec{q}) = \bar{E}(\vec{p},\vec{q}) - \mu^{(i)}(\epsilon,\lambda;\vec{p},\vec{q}), \quad i = 1,\ldots,d_S$$

The problem is now a Generalized Eigenvalue Problem win B_p , B_s space to find $E_{\lambda}^{(i)}(\vec{p},\vec{q})$

$\Sigma^- \to n$ Transition

• Consider the action: $S = S_g + \int_x (\bar{u}, \bar{s}) \begin{pmatrix} D_u & -\lambda \mathcal{T} \\ -\lambda \mathcal{T}' & D_s \end{pmatrix} \begin{pmatrix} u \\ s \end{pmatrix} + \int_x \bar{d} D_d d$ where $\mathcal{T}(x, y; \vec{q}) = \gamma e^{i\vec{q}\cdot\vec{x}} \delta_{x,y}$

Construct a matrix of correlation functions:

$$C_{\lambda B'B} = \begin{pmatrix} C_{\lambda \Sigma \Sigma} & C_{\lambda \Sigma N} \\ C_{\lambda N \Sigma} & C_{\lambda N N} \end{pmatrix}_{B'B}$$

After solving the GEVP, the energies are related to the matrix element

$$\Delta E_{\lambda \Sigma N} = \sqrt{\left(E_N(\vec{q}) - M_{\Sigma}\right)^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$$

$\Sigma^- o n$ Transition

$$C_{\lambda B'B} = \begin{pmatrix} C_{\lambda \Sigma \Sigma} & C_{\lambda \Sigma N} \\ C_{\lambda N \Sigma} & C_{\lambda N N} \end{pmatrix}_{B'B}$$

Each correlator is built from a Green's function:

 $G^{(su)} = \lambda D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5 G^{(uu)}$

$$\begin{pmatrix} G_{uu} & G_{us} \\ G_{su} & G_{ss} \end{pmatrix} = \begin{pmatrix} (\mathcal{M}^{-1})_{uu} & (\mathcal{M}^{-1})_{us} \\ (\mathcal{M}^{-1})_{su} & (\mathcal{M}^{-1})_{ss} \end{pmatrix}$$

• Where:

$$G^{(uu)} = (1 - \lambda^2 D_u^{-1} \mathcal{T} D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5)^{-1} D_u^{-1}$$

$$G^{(ss)} = (1 - \lambda^2 D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5 D_u^{-1} \mathcal{T})^{-1} D_s^{-1}$$

$$G^{(us)} = \lambda D_u^{-1} \mathcal{T} G^{(ss)},$$

Problem: inversion within another inversion

Iterative Green's functions

 $\left(\begin{array}{ccc} G_{uu} & G_{us} \\ G_{ou} & G_{oo} \end{array}\right)$

 We can expand the Green's functions for small lambda

- Will give the exact result as n goes to infinity.
- We will consider up to order $\mathcal{O}(\lambda^4)$

 This allows changing the value of lambda after the inversions!

$$G_{2n+2}^{(uu)} = D_u^{-1} + \lambda^2 D_u^{-1} \mathcal{T} D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5 G_{2n}^{(uu)},$$

$$G_{2n+2}^{(ss)} = D_s^{-1} + \lambda^2 D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma D_u^{-1} \mathcal{T} G_{2n}^{(ss)},$$

$$G_{2n+1}^{(us)} = \lambda D_u^{-1} \mathcal{T} G_{2n}^{(ss)}$$

$$G_{2n+1}^{(su)} = \lambda D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5 G_{2n}^{(uu)}$$

 $\begin{pmatrix} G_{uu} & G_{us} \\ G_{su} & G_{ss} \end{pmatrix}$

Iterative Green's functions

For example, take $\mathcal{O}(\lambda^3)$:

Kinematics

- Choose the Sigma to be at rest and change the momentum of the nucleon
- Choose the operator to be the vector current γ_4
- For hyperons with quasi-degenerate energies the shift due to a perturbation in the action lambda is

$$\Delta E_{\lambda \Sigma N} = \sqrt{(E_N(\vec{q}) - M_{\Sigma})^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$$

- When the energy of the nucleon equals the mass of the Sigma, this will be linear in lambda.
 - How far from the degenerate energy point can we make this work?
 - At $Q^2=0$?

(Partially) Twisted Boundary Conditions

- Momentum on the lattice is quantised
 - how do we get to the energy-degenerate point?
- Twisted boundary conditions add a complex phase to the boundary conditions
 - Gives lattice correlators any momentum

$$q(\vec{x} + N_s \vec{e}_i, t) = e^{i\theta_i} q(\vec{x}, t)$$

- Q² points of interest:
 - Degenerate energy $E_N(\vec{q}) = M_{\Sigma}$
 - $Q^2 = 0$

 $Q^2 = -(M_{\Sigma} - E_N(\vec{q}))^2 + \vec{q}^2$

Lattice details

- 32³x64 lattice size
- Lattice spacing a=0.074fm
- $N_f = 2 + 1$, O(a)-improved clover Wilson fermions
- Up and down quark are degenerate
- O(500) configurations used for each choice of momentum

run#	θ_2/π	\vec{q}^{2}	E_N	$M_{\Sigma} - E_N$	$Q^2[\text{GeV}^2]$
1	0.0	0.0	0.424(11)	0.0366(33)	-0.0095
2	0.448	0.0019	0.429(10)	0.0351(35)	0.0048
3	1	0.0096	0.437(10)	0.0301(42)	0.0620
4	1.6	0.0247	0.450(12)	0.0182(57)	0.1732
5	2.06	0.0408	0.462(12)	0.0030(69)	0.2901
6	2.25	0.0488	0.469(13)	-0.0037(78)	0.3472

Generalized EigenValue Problem (GEVP)

• Diagonalise the matrix
$$C_{\lambda B'B} = \begin{pmatrix} C_{\lambda \Sigma \Sigma} & C_{\lambda \Sigma N} \\ C_{\lambda N \Sigma} & C_{\lambda N N} \end{pmatrix}_{B'B}$$

- Gives two eigenvectors and eigenvalues
- Eigenvalues related to the energy
- Use the eigenvectors to project out two correlation functions:

$$C_{\lambda}^{(i)}(t) = v^{(i)\dagger}C_{\lambda}(t)u^{(i)}, \quad i = \pm$$

 Take the ratio of the two correlators and fit to the energy shift ΔE .

$$R_{\lambda}(t; \vec{0}, \vec{q}) = \frac{C_{\lambda}^{(-)}(t; \vec{0}, \vec{q})}{C_{\lambda}^{(+)}(t; \vec{0}, \vec{q})} \stackrel{t \gg 0}{\propto} e^{-\Delta E_{\lambda}(\vec{0}, \vec{q})t}$$

GEVP Stability

Stable under GEVP parameters?

- Do the GEVP for many value of t₀ and Δt
- Calculate the value of $\Delta E(c^+,c^-)$ from the eigenvalues
- Compare with ΔE from the fit to the ratio of correlators
- For each Δt we show results from $t_0=1-8$

GEVP depends on two parameters ($t_0 \& \Delta t$):

$$C_{\lambda}^{-1}(t_0)C_{\lambda}(t_0 + \Delta t)e^{(i)} = c^{(i)}e^{(i)}$$

Result from GEVP are stable in range $\Delta t \ge 4$ and $t_0 \ge 6$

ΔE as a function of λ when $E_N(\vec{q}) = M_{\Sigma}$

- Iterative Method: higher orders in lambda increase the range over which our approximation holds
- We want to fit in the region where the dependence is linear
- Choose the region where the two highest order results agree
 - $O(\lambda^3)$ and $O(\lambda^4)$ agree up to λ =0.05

$$R_{\lambda}(t; \vec{0}, \vec{q}) = \frac{C_{\lambda}^{(-)}(t; \vec{0}, \vec{q})}{C_{\lambda}^{(+)}(t; \vec{0}, \vec{q})} \overset{t \gg 0}{\approx} e^{-\Delta E_{\lambda}(\vec{0}, \vec{q})t}$$

$$\Delta E_{\lambda \Sigma N} = \sqrt{(E_N(\vec{q}) - M_{\Sigma})^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$$

Fitting the slope of ΔE

 $\Delta E_{\lambda} = \sqrt{(E_N(\vec{q}) - M_{\Sigma})^2 + 4\lambda^2 \langle ME \rangle_{\text{lat}}^2}$

 Consider the ratio at two values of λ close to each other.

$$\frac{R_{\lambda+\delta\lambda}(t)}{R_{\lambda}(t)} \overset{t\gg 0}{\propto} e^{-(\Delta E_{\lambda+\delta\lambda} - \Delta E_{\lambda})t}$$

- This cancels out more correlations
- Fit to get the slope in λ
- Relate the slope to the matrix element

Does the method work at $Q^2=0$?

The expansion in λ holds for a smaller range: $O(\lambda^3)$ and $O(\lambda^4)$ diverge around $\lambda = 0.03$

<= Fitting to the slope at small λ still produces stable results

$$\Delta E_{\lambda \Sigma N} = \sqrt{(E_N(\vec{q}) - M_{\Sigma})^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$$

3-point function

- Same # of gauge configurations
- Both $\Sigma^- \to n$ and opposite 3-point functions used.
- 3 source-sink separations:
 - t=10,13,16 (0.74, 0.96, 1.18 fm)
- Fit ansatz includes all three t_{sep}
 and the first excited state

Ratio of 3pt and 2pt functions at Q²=0

The dependence on t_{sep} has not been eliminated: => Has the ground state been saturated?

36

How does this compare to three-point function results?

Matrix element as a function of Q^2 :

3-point function results at non-zero Q² only used one transition direction

How does this compare to three-point function results?

0.05

Avoided level crossing

Eigenvectors

 The eigenvectors of the GEVP show the mixing between the states as a function of q²

$$\vec{e}^{(\pm)} = \begin{pmatrix} e_1^{(\pm)} \\ e_2^{(\pm)} \end{pmatrix}$$

Conclusion

- The Feynman-Hellman method can be used to calculate hyperon transition form factors
- Only requires one Euclidean time parameter to be optimised to extract the ground state.
- Using multiple different operators will allow for the extraction of separate form facors
- Method should be tested on lattices with larger splittings between the light and strange quarks