FQ

Mesons 0000000 000000000000000000000

FEATURES OF HADRON STRUCTURE WITH BASIS LIGHT-FRONT QUANTIZATION

Chandan Mondal

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

in collaboration with

Jiangshan Lan, Jialin Chen, Jiatong Wu, Ziqi Zhang, Zhi Hu, Siqi Xu, Xingbo Zhao, Yang Li and James P. Vary

May 9, 2022

Q

Nucleon

Conclusions

Introduction

Basis Light-Front Quantization (BLFQ) Approach to

Mesons BLFQ-NJL Model With One Dynamical Gluon

Nucleon Leading Fock-Sector With One Dynamical Gluon

Conclusions

TQ I

Mesons 0000000 000000000000000000000

Mass & Spin

- About 99% of the visible mass is contained within nuclei
- Nucleon: composite particles, built from nearly massless quarks ($\sim 1\%$ of the nucleon mass) and gluons
- How does 99% of the nucleon mass emerge?
- Quantitative decomposition of *nucleon spin* in terms of quark and gluon degrees of freedom is not yet fully understood.
- To address these fundamental issues
 → nature of the subatomic force
 between quarks and gluons, and the
 internal landscape of nucleons.

¹Andrea Signori, University of Pavia and Jefferson Lab

• $x \rightarrow$ longitudinal momentum fraction; $k_{\perp} \rightarrow$ parton transverse momentum; $r_{\perp} \rightarrow$ transverse distance from the center.

Introduction 00•

LFQ 000 Mesons 0000000 00000000000000000000

Form Factors Vs PDFs Vs GPDs

BLFQ ●OO Mesons 0000000 00000000000000000000

Basis Light-Front Quantization (BLFQ)

A computational framework for solving relativistic many-body bound state \sim problems in quantum field theories ¹

- $P^{-}P^{+}|\Psi\rangle = M^{2}|\Psi\rangle$
- $P^- \equiv P^0 P^3$: light-front Hamiltonian
- $P^+ \equiv P^0 + P^3$: longitudinal momentum
- $|\Psi\rangle$ mass eigenstate
- M^2 : mass squared eigenvalue for eigenstate $|\Psi\rangle$
- First-principle / effective Hamiltonian as input
- Evaluate observables

 $O \sim \langle \Psi | \hat{O} | \Psi \rangle$

• direct access to light-front wavefunction of bound states

GOAL

Vary, Honkanen, Li, Maris, Brodsky, Harindranath, et. al., Phys. Rev. C 81, 035205 (2010).

BLFQ 000

Nucleon

Conclusions

Solution proposed by BLFQ

Discrete basis and their direct product	Truncation
2D HO $\phi_{nm}(p^{\perp})$ in the transverse plane	$\sum_i \left(2n_i + m_i + 1\right) \leq N_{\max}$
Plane-wave in the longitudinal direction	$\sum_i k_i = K, x_i = \frac{k_i}{K}$
Light-front helicity state for spin d.o.f.	$\sum_{i}\left(m_{i}+\lambda_{i}\right)=M_{J}$
$\alpha_i = (k_i, n_i, m_i, \lambda_i)$ $ \alpha\rangle = \otimes_{\mathbb{C}} \alpha\rangle$	Fock sector truncation

• Fock expansion of hadronic bound states:

$$\begin{split} |\mathrm{Meson}\rangle &= \psi_{(q\bar{q})} |q\bar{q}\rangle + \psi_{(q\bar{q}+q\bar{q})} |q\bar{q}q\bar{q}\rangle + \psi_{(q\bar{q}+1g)} |q\bar{q}g\rangle + \dots \,, \\ |\mathrm{Baryon}\rangle &= \psi_{(3q)} |qqq\rangle + \psi_{(3q+q\bar{q})} |qqqq\bar{q}\rangle + \psi_{(3q+1g)} |qqqg\rangle + \dots \,, \end{split}$$

¹Vary, Honkanen, Li, Maris, Brodsky, Harindranath, et. al., Phys. Rev. C 81, 035205 (2010).

Mesons 000000

Applications of BLFQ

QCD systems

BLFQ 000

• Heavy mesons: spectrum, decay constant, elastic form factor, radii, radiative transitions, distribution amplitude, PDFs, GPDs

-Li, Chen, Zhao, Maris, Vary, Adhikari, M Li, Tang, A El-Hady, Lan, Wu, CM (2016 - 2022)

• Light mesons: spectrum, decay constant, elastic form factor, radii, distribution amplitude, PDFs, GPDs, TMDs

-Jia, Vary, Lan, Zhao, Qian, Li, Fu, J. Chen, Wu, CM (2018 - 2022)

• Baryons: EMFFs, axial form factor, radii, PDFs, GPDs, TMDs, OAM

-Xu, Hu, Peng, Zhu, Zhao, Li, Chakrabarti, Vary, Lan, Liu, CM (2019-2022)

• Tetraquarks: Masses of all-charm tetraquarks

-Kuang, Serafin, Zhao, Vary (2022)

QED systems

- Electron: anomalous magnetic moments, GPDs
- positronium: wave function, spectroscopy, FFs, GPDs
- Photon: wave function, structure functions, GPDs, TMDs

⁻Zhao, Wiecki, Li, Honkanen, Maris, Vary, Brodsky, Fu, Hu, Nair, CM (2013 - 2022)

¹Jia and Vary, Phys. Rev. C 99, 035206 (2019)

²Brodsky, Teramond, Dosch and Erlich, Phys. Rep. 584, 1 (2015).

³Li, Maris, Zhao and Vary, Phys. Lett. B 758, 118 (2016)

⁴Klimt, Lutz, Vogl and Weise, Nucl. Phys. A **516**, 429-468 (1990).

Q Mesons 0000000

Meson Light-Front Wave Functions (LFWFs)

• Valence LFWFs in orthonormal bases

$$\psi_{rs}(x,\vec{\kappa}^{\perp}) = \sum_{n,m,l} \langle n,m,l,r,s|\psi\rangle \times \phi_{nm}\left(\vec{\kappa}^{\perp}\right)\chi_l(x)$$

• Transverse direction (2D-HO)

$$\phi_{nm}\left(\vec{\kappa}^{\perp}\right) \sim \left(|\vec{\kappa}^{\perp}|\right)^{|m|} \times \exp\left(-\vec{\kappa}^{\perp 2}\right) L_n^{|m|}\left(\vec{\kappa}^{\perp 2}\right); \quad 0 \le n \le N_{\max}$$

• Longitudinal direction (Jacobi polynomial basis)

• Coefficients $\langle n, m, l, r, s | \psi \rangle$: eigenvector in BLFQ basis representation.

 $^{2}\mathrm{Li},$ Maris, and Vary, Phys. Rev. D 96 , 016022 (2017)

Q

BLFQ-NJL Model Parameters

- Parameters are fixed to
 - reproduce ground state masses
 - experimental charge radii of π^+ and K^{+1}
- Successfully applied to
 - compute PDAs and EMFFs ¹
 - \bullet PDFs for pion and kaon and pion-nucleus induced Drell-Yan cross sections 23
 - GPDs ⁴
- Summary of model parameters

Valence flavor	$N_{\rm max}$	L_{\max}	$\kappa ({ m MeV})$	$m_q({\rm MeV})$	$m_{\bar{q}}(\mathrm{MeV})$
$u\bar{d}$	8	8-32	227	337	337
$u\bar{s}$	8	8 - 32	276	308	445

¹ Jia and Vary, Phys. Rev. C 99, 035206 (2019)

²Lan, CM, Jia, Zhao, Vary, Phys. Rev. Lett. 122 172001 (2019)

³Lan, CM, Jia, Zhao, Vary, Phys. Rev. D 101, 034024 (2020)

⁴Adhikari, CM, Nair, Xu, Jia, Zhao and Vary, Phys. Rev. D 104, 114019 (2021)

Light-front effective Hamiltonian, $H_{\rm eff}$: $(\mu_{0\pi}^2 = 0.240 \pm 0.024 \ {\rm GeV}^2)$

Diagonalizing $H_{\text{eff}} \Rightarrow \text{LF}$ wavefunction \Rightarrow Initial PDFs \Rightarrow Scale evolution ¹.

$$\psi_{rs}(x,\vec{\kappa}^{\perp}) = \sum_{n,m,l} \langle n,m,l,r,s|\psi\rangle \times \phi_{nm}\left(\vec{\kappa}^{\perp}\right)\chi_l(x)$$

- 2D-HO $\phi_{nm} \left(\vec{\kappa}^{\perp} \right)$ in the transverse plane.
- Jacobi polynomial basis $\chi_l(x)$ in the longitudinal direction.

¹Lan, CM, Jia, Zhao, Vary, Phys. Rev. Lett. 122 172001 (2019)

LFQ 000

Moments of Pion PDF

Moments of the valence quark PDF

$$\langle x^n \rangle = \int_0^1 dx \; x^n f_v^{\pi}(x,\mu^2), \; n = 1, 2, 3, 4.$$

Consistent with global fit, lattice QCD, and phenomenological models.

¹Lan, CM, Jia, Zhao, Vary, Phys. Rev. D 101, 034024 (2020)

LFQ Do

Distribution Amplitude

DAs of pseudoscalar states

$$\phi(x,\mu_0) \sim \frac{1}{\sqrt{x(1-x)}} \int \frac{\mathrm{d}^2 \vec{k}_{\perp}}{2(2\pi)^3} \frac{(\psi_{\uparrow\downarrow} - \psi_{\downarrow\uparrow})}{\sqrt{2}}$$

• DA evolution: ERBL equations (Gegenbauer basis)

Ruiz, et. al. PRD 66, (2002)

- Oscillations \rightarrow Basis artifacts
- With increasing L_{\max} the DA tends toward a smooth function
- Our DA is close to Asymptotic DA

Decay constant f_{π} :

BLFQ (Basis [8, 32]): 145.3 MeV Experimental data: 130.2 ± 1.7 MeV

• Consistent with the FNAL-E-791

¹Mondal, Nair, Jia, Zhao and Vary, Phys. Rev. D 104, 094034 (2021)

LFQ 00
$$\pi{\rightarrow}\gamma^*\gamma$$
 Transition Form Factor

$$\langle \gamma(P-q)|J^{\mu}|M(P)\rangle = -ie^2 F_{M\gamma}(Q^2)\epsilon^{\mu\nu\rho\sigma}P_{\nu}\epsilon_{\rho}q_{\sigma}$$

- Results for $\{N_{\max}, L_{\max}\} \equiv \{8, 8\}, \{8, 16\}, \text{ and } \{8, 32\} (upper panel)$
- The results show a good convergence trend over the range of Q^2
- Consistent with data reported by Belle Collaboration.
- Deviates from the rapid growth of the large Q^2 data reported by BaBar Collaboration.

¹Mondal, Nair, Jia, Zhao and Vary, Phys. Rev. D 104, 094034 (2021)

Q

Effective Hamiltonian with One Dynamical Gluon

TMP

17/60

Light-Front QCD Hamiltonian [Brodsky et al, 1998] $P_{-,LFQCD} = \frac{1}{2} \int d^3x \, \bar{\psi} \gamma^+ \frac{(i\partial^\perp)^2 + m^2}{i\partial^+} \, \psi - \frac{1}{2} \int d^3x \, A_a^i (i\partial^\perp)^2 A_a^i$ $+g \int d^3x \, \bar{\psi} \gamma_\mu A^\mu \, \psi$ فحوجو $+\frac{1}{2}g^2\int d^3x\,\bar{\psi}\gamma_{\mu}A^{\mu}\frac{\gamma^{+}}{i\partial^{+}}\gamma_{\nu}A^{\nu}\psi$ $-ig^2 \int d^3x f^{abc} \bar{\psi} \gamma^+ T^c \psi \frac{1}{(i\partial^+)^2} (i\partial^+ A^{\mu}_a A_{\mu b})$ $+\frac{1}{2}g^2\int d^3x\,\bar{\psi}\gamma^+T^a\psi\frac{1}{(i\partial^+)^2}\bar{\psi}\gamma^+T^a\psi$ $+ig \int d^3x f^{abc} i\partial^{\mu} A^{\nu a} A^b_{\mu} A^c_{\nu}$ $-\frac{1}{2}g^2\int d^3x \, f^{abc} \, f^{ade} \, i\partial^+ A^{\mu}_b A_{\mu c} \frac{1}{(i\partial^+)^2} (i\partial^+ A^+_d A_{\nu e})$ $+\frac{1}{\Lambda}g^2\int d^3x\,f^{abc}\,f^{ade}\,A^{\mu}_bA^{\nu}_cA_{\mu d}A_{\nu e}.$

Mass Spectrum of Light Unflavored Mesons

 1 J. Lan, K. Fu, CM, X. Zhao and J. P. Vary, Phys.Lett.B 825 (2022)

IMP

▶ At middle x, $\psi \sim p_{\perp}$: a little bit wide

8

BLFQ DOO

Pion Electromagnetic Form Factor

• $N_{\text{max}} = 14$ (BLFQ basis), implies the UV regulator $\Lambda_{\text{UV}} \approx 1$ GeV.

- Reasonable agreement with experimental data $(Q^2 < 1)$.
- $F(Q^2) \sim 1/Q^2$ at large Q^2 .

¹J. Lan, K. Fu, CM, X. Zhao and J. P. Vary, Phys.Lett.B 825 (2022)

FQ

LFQ Do

Pion PDFs after QCD Evolution

 1 J. Lan, K. Fu, CM, X. Zhao and J. P. Vary, Phys.Lett.B 825 (2022)

IMP

Pion GPDs [M. Dichl, Phys. Rep. 388 (2003) 41-277] $|\pi\rangle = a|q\overline{q}\rangle + b|q\overline{q}g\rangle_{+}^{+} + \dots^{-1}$ $H_{\pi}^{q}(x,\xi=0,t) = \frac{1}{2}\int \frac{dz^{-}}{2\pi}e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} | \overline{q} \left(-\frac{z}{2}\right) \gamma^{+}q \left(\frac{z}{2}\right) | \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$ $H_{\pi}^{g}(x,\xi=0,t) = \frac{1}{P^{+}} \int \frac{dz^{-}}{2\pi}e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} | G^{+\mu} \left(-\frac{z}{2}\right) G_{\mu}^{+} \left(\frac{z}{2}\right) | \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$

- Quark content enhanced at small x with $|q\overline{q}g\rangle$
- Falls slowly at larger x
- Emerge at larger x range for larger -t

Preliminary

Pion GPDs in Impact Parameter Space

 $|\pi\rangle = a|q\overline{q}\rangle + b|q\overline{q}g\rangle + \dots$ [M. Diehl, Phys. Rep. 388 (2003) 41-277] $H^q_{\pi}(x,\xi=0,t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{i \times P^+ z^-} \left\langle \pi, P + \frac{\Delta}{2} \Big| \overline{q} \left(-\frac{z}{2}\right) \gamma^+ q\left(\frac{z}{2}\right) \Big| \pi, P - \frac{\Delta}{2} \right\rangle_{z^+ = 0}$ $H^g_{\pi}(x,\xi=0,t) = \frac{1}{P^+} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle \pi, P + \frac{\Delta}{2} \Big| G^{+\mu} \left(-\frac{z}{2}\right) G^+_{\mu} \left(\frac{z}{2}\right) \Big| \pi, P - \frac{\Delta}{2} \right\rangle_{z^+=0}$ The impact parameter distributions (IPDs) Preliminary Quark Gluon 10 (⊤q'x)^bH $(^{T}q^{*}x)_{a}^{s}H$ 1.0 10 0.0 0 0.5 0.0 0.5 0.0 0.5 0.5 b_{\perp} [fm] *b*⊥ [fm] 0.0 0.0 1.0 1.0

• The gluon is slightly broader than the quark

¹J. Lan, J. Wu, et. al., in preparation

Pion TMDs

¹J. Lan, J. Wu, et. al., in preparation

Q

Strange Meson Mass Spectrum

[Lan, et al, Phys. Lett. B 825 (2022) 136890]

IMP

 $^{^{1}}$ J. Chen *et. al.*, in preparation

Mesons Wavefunction in Leading Fock Sector $|\text{meson}\rangle = a|q\overline{s}\rangle + b|q\overline{s}g\rangle| + \dots$ $\Psi^{\mathcal{N},M_J}_{\{x_i,\overline{p}_{\perp i}^2,\lambda_i\}} = \sum_{\{n_im_i\}} \psi^{\mathcal{N}}(\{\overline{\alpha}_i\}) \prod_{i=1}^{\mathcal{N}} \phi_{n_im_i}(\overline{p}_{\perp i}^{\sqcup},b)$ $\uparrow \uparrow -\uparrow \downarrow$ dominant in $|q\overline{s}\rangle$ ψ^{k=}#(x,p⊥)[GeV⁻¹] 1.5 1.0 1.0

- At endpoint x, $\psi \sim p_{\perp}$: lightly narrow
- Therefore Φ_{\pm} At middle x, $\psi \sim p_{\pm}$: a little bit wide
- The peak slightly less than x=1/2

2

Mesons 0000000 00000000000000000000

Kaon Electromagnetic Form Factor

- Reasonable agreement with experimental data.
- $F(Q^2) \sim 1/Q^2$ at large Q^2 .

1 J. Chen et. al., in preparation

IM

Kaon GPDs
[M. Diehl, Phys. Rep. 388 (2003) 41-277]
$$|K\rangle = a|q\overline{s}\rangle + b|q\overline{s}g\rangle + ...$$

 $H_{K}^{q}(x,\xi = 0,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle K, P + \frac{\Delta}{2} | \overline{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) | K, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+} = 0 \\ z_{\perp} = 0}}$
 $H_{K}^{g}(x,\xi = 0,t) = \frac{1}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle K, P + \frac{\Delta}{2} | G^{+\mu} \left(-\frac{z}{2} \right) G_{\mu}^{+} \left(\frac{z}{2} \right) | K, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+} = 0 \\ z_{\perp} = 0}}$

- Quark *u* content enhanced at small *x* with $|q\overline{s}g\rangle$
- Falls slowly at larger x
- Emerge at larger x range for larger -t

Preliminary

 $^{^{1}}$ J. Chen et. al., in preparation

BLE

Mesons 0000000 000000000000000000000

Nucleon within BLFQ

• The LF eigenvalue equation: $H_{\text{eff}}|\Psi\rangle = M^2|\Psi\rangle$

$$\begin{split} H_{\text{eff}} = & \sum_{a} \frac{\vec{p}_{\perp a}^{2} + m_{a}^{2}}{x_{a}} + \frac{1}{2} \sum_{a \neq b} \kappa^{4} \left[x_{a} x_{b} (\vec{r}_{\perp a} - \vec{r}_{\perp b})^{2} - \frac{\partial_{x_{a}} (x_{a} x_{b} \partial_{x_{b}})}{(m_{a} + m_{b})^{2}} \right] \\ & + \frac{1}{2} \sum_{a \neq b} \frac{C_{F} 4 \pi \alpha_{s}}{Q_{ab}^{2}} \bar{u}_{s_{a}'}(k_{a}') \gamma^{\mu} u_{s_{a}}(k_{a}) \bar{u}_{s_{b}'}(k_{b}') \gamma^{\nu} u_{s_{b}}(k_{b}) g_{\mu\nu} \end{split}$$

• For the first Fock sector:

 $|qqq\rangle = |n_{q_1}, m_{q_1}, k_{q_1}, \lambda_{q_1}\rangle \ \otimes \ |n_{q_2}, m_{q_2}, k_{q_2}, \lambda_{q_2}\rangle \ \otimes \ |n_{q_3}, m_{q_3}, k_{q_3}, \lambda_{q_3}\rangle$

- Transverse : 2D harmonic oscillator basis $\phi_{nm}(\vec{p}_{\perp})$; Plane wave basis in longitudinal direction.
- The valence wavefunction in momentum space:

$$\Psi^{M_J}_{\{x_i, \vec{p}_{\perp i}, \lambda_i\}} = \sum_{n_i, m_i} \left[\psi(\alpha_i) \prod_{i=1}^3 \phi_{n_i m_i}(\vec{p}_{\perp i}) \right]$$

Introduction H 000 G Mesons 000000

ns 0000 Nucleon

Conclusions

¹CM, Siqi Xu, et. al., Phys. Rev. D **102**, 016008 (2020)

²Xu CM Lan Zhao Li and Vary Phys Rev. D 104 094036 (2021)

LFQ

Mesons 0000000 0000000000000000000

Ratio of Form Factors

- Consistent with PQCD prediction ¹: $Q^2 F_2^p / F_1^p \sim \log^2[Q^2 / \Lambda^2]$
- Only valence quarks contributions
- Missing meson-cloud effects
- $|qqqq\bar{q}\rangle$ has a significant effect on Pauli FF: 30% in proton; 40% in neutron

Sufian et. al. PRD 95 (2017)

 $R \sim G_E/G_M$

¹Belitsky, Ji, and Yuan, Phys. Rev. Lett. 91, 092003 (2003)

2 CALL FI TH TH

Q N

Mesons 0000000 00000000000000000000

Axial Form Factor

$$\langle N(p)|A^{\mu}|N(p')\rangle = \bar{u}(p') \left[\gamma^{\mu}G_A(t) + \frac{(p'-p)^{\mu}}{2m}G_p(t)\right]\gamma_5 u(p)$$

- Axial vector current: $A^{\mu} = \bar{q}\gamma^{\mu}\gamma_5 q$
- Measured by ordinary muon capture (OMC)

$$\mu^{-}(l) + p(r) \to \nu_{\mu}(l') + n(r')$$

• Provide information on spin distributions

$$G_A(Q^2) = G_u(Q^2) - G_d(Q^2)$$

¹CM, Siqi Xu et. al., Phys. Rev. D 102, 016008 (2020)

Introduction	BLFQ	Mesons	Nucleon	Conclusions
000	000	0000000 000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Parton Distribution Functions

Xu, CM, Lan, Zhao, Li, and Vary, PRD 104, 094036 (2021)

- Unpolarized PDFs $f_1(x)$: longitudinal momentum distribution of unpol. quark in unpol. proton.
- Helicity PDFs $g_1(x)$: longitudinal momentum distribution of the polarized quark
- Results correspond to leading Fock sector only.

IMP

¹NNPDF, EPJC 77, 663 (2017); HMMT, EPJC 75, 204 (2015); CTEQ, PRD 93, 033006 (2016).

 $^{^{2}\}mathrm{COMPASS}$ Collaboration, Phys. Lett. B 693, 227 (2010).

Introduction	
000	

Mesons 0000000

Transversity Distribution

Xu, CM, Lan, Zhao, Li, and Vary, PRD 104, 094036 (2021)

• Transversity PDFs

describe correlation between the transverse polarization of the nucleon and the transverse polarization of the parton.

• Satisfy Soffer Bound:

$$|h_1(x)| \le \frac{1}{2}|f_1(x) + g_1(x)|$$

• Results correspond to leading Fock sector only, missing higher Fock sectors.

¹M. Radici and A. Bacchetta, Phys. Rev. Lett. 120, 192001 (2018).

²M. Anselmino, et. al., Phys. Rev. D 87, 094019 (2013).
GPDs for Spin-1/2 Target

$$\frac{P^{+}}{2\pi} \int dy^{-} e^{ixP^{+}y^{-}} \langle p' | \bar{\psi}_{q}(-y/2) \gamma^{+} \psi_{q}(y/2) | p \rangle \Big|_{y^{+} = \bar{y}_{\perp} = 0} \qquad \text{Off-forward matrix elements}$$

$$= H^{q}(x,\xi,t) \ \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t) \ \bar{u}(p') i \sigma^{+\nu} \frac{\Delta_{\nu}}{2M_{n}}u(p), \qquad \text{Off-forward matrix elements}$$
In momentum space no probabilistic interpretation
$$\Rightarrow \text{GPDs in impact parameter space:} \quad \mathcal{X}(x,b) = \frac{1}{2\pi} \int d^{2} \Delta e^{-i\Delta^{\perp} \cdot b^{\perp}} \mathcal{X}(x,t).$$
At t=0, 2nd moment of GPDs: angular momentum
$$J^{q} = \frac{1}{2} [A^{q}(0) + B^{q}(0)]$$
Second moment of GPDs give
gravitational FFs
$$\int_{0}^{1} dx \ xH_{v}^{q}(x,t) = A^{q}(t), \qquad \int_{0}^{1} dx \ xE_{v}^{q}(x,t) = B^{q}(t)$$

¹ Ji, Phys. Rev. Lett. 78, 610 (1997); Burkardt, Int. J. Mod. Phys. A 18, 173-208 (2003)

• Qualitative nature consistent with phenomenological models ²

Y. Liu, S. Xu, CM, X. Zhao, J. P. Vary, arXiv:2202.00985 [hep-ph].
 CM, D. Chakrabarti, EPJC 75, 261 (2015); PRD 88, 073006 (2013)

x-Dependent Squared Radius

¹Xu, CM, Lan, Zhao, Li, and Vary, PRD 104, 094036 (2021)

² R. Dupre, M. Guidal and M. Vanderhaeghen, PRD 95, 011501 (2017).

BLFQ 000 Mesons 0000000 000000000000000000000

Other Observables

• The magnetic moment of the proton and neutron

Quantity	BLFQ	Measurement ^a	Lattice		
$\mu_{ m p}$	2.443 ± 0.027	2.79	2.43(9)		
$\mu_{ m n}$	-1.405 ± 0.026	-1.91	-1.54(6)		

• The radii of the proton and neutron

Quantity	BLFQ	Measurement	Lattice
$r_{ m E}^{ m p}~[{ m fm}]$	$0.802\substack{+0.042\\-0.040}$	0.833 ± 0.010	0.742(13)
$r_{ m M}^{ m p}~[{ m fm}]$	$0.834^{+0.029}_{-0.029}$	0.851 ± 0.026	0.710(26)
$\langle r_{\rm E}^2 \rangle^{ m n}$ [fm ²]	-0.033 ± 0.198	-0.1161 ± 0.0022	-0.074(16)
$r_{\mathrm{M}}^{\mathrm{n}} \; [\mathrm{fm}]$	$0.861^{+0.021}_{-0.019}$	$0.864^{+0.009}_{-0.008}$	0.716(29)

• The axial charge and axial radius

Quantity	BLFQ	Extracted data	Lattice
$g^u_{ m A}$	1.16 ± 0.04	0.82 ± 0.07	0.830(26)
$g^d_{ m A}$	-0.248 ± 0.027	-0.45 ± 0.07	-0.386(16)
$g_{ m A}^{u-d}$	1.41 ± 0.06	1.2723 ± 0.0023	1.237(74)
$\sqrt{\langle r_{\rm A}^2 \rangle}~{\rm fm}$	$0.680^{+0.070}_{-0.073}$	0.667 ± 0.12	0.512(34)

¹ Latting, Alexandrow 2018 am, Vac 2017 from Alexandrow 2017 och

In the quark model $\Delta\Sigma=1$ The spin decomposition can be measured by polarized DIS

• Ji decomposition:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_{Ji}^{q} + J_{g}$$

Ji sum rule: $J^{q/g} = \frac{1}{2} \int dx \, x \left[H^{q/g}(x,0,0) + E^{q/g}(x,0,0) \right]$

Angular Momentum Distributions in Transverse Plane

Flavor contributions: [Liu, Xu, CM, Zhao and Vary, accepted in PRD]

Twist-3 GPDs & OAM $\,$

BLFQ calculation:

Stephan Meißner et al JHEP08(2009)056

$$\begin{aligned} \mathbf{Parameterization:} \ F_{\lambda\lambda'}^{[\gamma J]} &= \frac{M}{2(P^+)^2} \, \bar{u}(p',\lambda') \left[i\sigma^{+j} \, H_{2T}(x,\xi,t) + \frac{\gamma^+ \Delta_T^j - \Delta^+ \gamma^j}{2M} \, E_{2T}(x,\xi,t) \right. \\ &+ \frac{P^+ \Delta_T^j - \Delta^+ P_T^j}{M^2} \, \tilde{H}_{2T}(x,\xi,t) + \frac{\gamma^+ P_T^j - P^+ \gamma^j}{M} \, \tilde{E}_{2T}(x,\xi,t) \right] u(p,\lambda) \,, \end{aligned}$$

d quark

u quark

 H_{2T} , E_{2T} and \tilde{H}_{2T} are 0 at zero-skewness($\xi = 0$).

²Ziqi Zhang et. al., in preparation

LFQ 00 Mesons 0000000 000000000000000000000

Twist-3 GPDs & OAM

OAM density distribution:

$$\begin{split} \mathcal{F}_{\perp\mu}(x,\xi,\Delta) &= \bar{N}(P',S') \qquad \text{Polyakov et al.} \\ &\times \left\{ (H+E) \ \gamma_{\mu}^{\perp} + G_1 \ \frac{\Delta_{\mu}^{\perp}}{2M} + G_2 \ \gamma_{\mu}^{\perp} + G_3 \ \Delta_{\mu}^{\perp} \hat{n} + G_4 \ i \varepsilon_{\mu\nu}^{\perp} \Delta_{\perp}^{\nu} \hat{n} \gamma_5 \right\} \end{split}$$

 $\times N(P, S),$

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + J_g,$$

The contribution of quark OAM can be related to twist-3 and twist-2 GPDs:

¹Courtoy, Goldstein, Gonzalez Hernandez, Liuti and Rajan, Phys. Lett. B 731, 141-147 (2014)
 ²Ziqi Zhang et. al., in preparation

IMP

JFQ 00 Mesons 0000000 000000000000000000000 Nucleon Co

Conclusions

TMDs of Spin-1/2 Target

Leading Twist TMDs

→ Nucleon Spin

• 6 T-even TMDs and 2 T-odd TMDs.

¹A. Accardi *et al.*, Eur.Phys.J.A 52 (2016) 9, 268.

BLFQ 000 Mesons 0000000 000000000000000000000 Concl

Quark TMDs in Proton

Nucleon

qualitative agreement with other theoretical calculations

[10.1103/PhysRevD.81.074035; 10.1103/PhysRevD.80.014021; 10.1103/PhysRevD.103.014024; 10.1103/PhysRevD.78.074010; 10.1103/PhysRevD.95.074009; 10.1103/PhysRevD.78.034025; 10.1103/PhysRevD.83.094507; 10.1103/PhysRevD.85.094510; 10.1103/PhysRevD.96.094508]

¹Zhi Hu, Siqi Xu, CM, Xingbo Zhao, J. P. Vary, in preparation

BLFQ DOO Mesons 0000000 0000000000000000000

Flavor-Ratios Compared with Lattice QCD

- comparison with lattice results Musch2011
 [10.1103/PhysRevD.83.094507]
- ratio cancel possible overall factors and effects from scale evolution
- our d quark distributions extend to higher $(p^{\perp})^2 \rightarrow$ our flavor ratio decrease faster

¹Zhi Hu, Siqi Xu, CM, Xingbo Zhao, J. P. Vary, in preparation

¹Zhi Hu, Siqi Xu, CM, Xingbo Zhao, J. P. Vary, in preparation

Comparison with Gaussian Ansatz

¹Zhi Hu, Siqi Xu, CM, Xingbo Zhao, J. P. Vary, in preparation

Mes 000

Mesons 0000000 00000000000000000000

Effective Hamiltonian with One Dynamical Gluon

 $\mid \text{Baryon} \rangle = a \mid qqq \rangle + b \mid qqqg \rangle + c \mid qqqq\bar{q} \rangle + \dots$

¹S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, work in progress.

²Brodsky, Teramond, Dosch and Erlich, Phys. Rep. 584, 1 (2015).

³Li, Maris, Zhao and Vary, Phys. Lett. B (2016).

⁴Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998).

- Within $|qqq\rangle$, gluon is generated dynamically from the DGLAP evolution.
- Including dynamical gluon, the gluon distribution is closer to the global fit.

- Within $|qqq\rangle$, gluon is generated dynamically from the QCD evolution.
- Including dynamical gluon, the gluon distribution is closer to the global fit.

• Including dynamical gluon, the distributions improve at small x and x > 0.5.

rQ I Aesons 0000000 000000000000000000000

Gluon GPDs

Meissner, Metz and Goeke, PRD 76, 034002 (2007)

$$F^{g}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^{+}} \bar{u}(p',\lambda') \left(\gamma^{+} H^{g}(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E^{g}(x,\xi,t)\right) u(p,\lambda),$$

$$\tilde{F}^{g}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^{+}} \bar{u}(p',\lambda') \left(\gamma^{+}\gamma_{5} \tilde{H}^{g}(x,\xi,t) + \frac{\Delta^{+}\gamma_{5}}{2M} \tilde{E}^{g}(x,\xi,t)\right) u(p,\lambda).$$

¹S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, work in progress.

IMP

BLFQ 000

GTMDs & OAM

Generalized Transverse-Momentum Parton Distribution functions

$$\begin{split} W^{[\gamma^{+}]}_{\lambda\lambda'}\left(P, \mathbf{x}, \vec{k}_{\perp}, \Delta\right) &= \frac{1}{2} \int \frac{dz^{-} d^{2} \vec{z}_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \left(p', \lambda' \left| \overline{\psi} \left(-\frac{1}{2}z\right) \gamma^{+} \psi \left(\frac{1}{2}z\right) \right| p, \lambda \right) \\ N^{[\delta i j]}_{\lambda\lambda'}\left(P, \mathbf{x}, \vec{k}_{\perp}, \Delta\right) &= \frac{1}{\mathbf{x}P^{+}} \int \frac{dz^{-} d^{2} \vec{z}_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \left(p', \lambda' \left| G^{+i} \left(-\frac{1}{2}z\right) G^{+i} \left(\frac{1}{2}z\right) \right| p, \lambda \right) \end{split}$$

Orbital angular

Parameterization:

T

$$\begin{split} & \mathbb{W}_{\lambda\lambda'}^{[\gamma^+]}\left(P, x, \vec{k}_{\perp}, \Delta\right) = \mathbb{W}_{\lambda\lambda'}^{[\delta^{ij}]}\left(P, x, \vec{k}_{\perp}, \Delta\right) \\ &= \frac{1}{2M} \overline{u}(p', \lambda') \left[F_{1,1} + \frac{i\sigma^{j+}}{p^+} \left(k_{\perp}^j F_{1,2} + \Delta_{\perp}^j F_{1,3}\right) + i \frac{\sigma^{ij} k_{\perp}^i \Delta_{\perp}^j}{M^2} F_{1,4}\right] u(p, \lambda) \end{split}$$

 $F_{1,4}$ is related to the orbital angular momentum

$$L_{q,g}(x) = -\int d^2k_{\perp} \frac{k_{\perp}^2}{M^2} \; F_{1,4}(x,k_{\perp},\Delta_{\perp}=0)$$

 $^1 \mathrm{S.}$ Bhattacharya, R. Boussarie and Y. Hatta, arXiv-hep:2201.08709 (2022)

 k^2 [GeV²]

x 0.8

0.0

FQ) Mesons 0000000 000000000000000000000

LFQ DO Mesons 0000000 000000000000000000000

Conclusions

- Light-front Hamiltonian approach: Mass spectra \Leftrightarrow Structure
- $|q\bar{q}\rangle$ & $|q\bar{q}g\rangle$ for mesons, $|qqq\rangle$ & $|qqqg\rangle$ for nucleon.
- LF Hamiltonian \Rightarrow Wavefunctions \Rightarrow Observables.
- Provides good description of exp. data/global fits for various observables.
- TMDs are consistent with Gaussian-type distributions in the small p_{\perp}^2 ; and with perturbative calculations in the large p_{\perp}^2 .
- Preliminary results on gluon distributions of mesons and nucleon.
- With dynamical gluons, the quark spin contribution (70%) is reduced and the gluon spin plays a substantial role in understanding the nucleon spin.
- This is not a complete picture ... long way to go.

Enormous amount of possibilities with future EICs \ldots \ldots Thank You

FQ 0 Mesons 0000000 00000000000000000000

$$\pi{\rightarrow}\gamma^*\gamma^*$$
 Transition Form Factor

$$F_{\pi\gamma^*}(Q_1^2, Q_2^2) = \frac{\sqrt{2}}{3} f_{\pi} \int_0^1 \mathrm{d}x \, T_{\mathrm{H}}^{\gamma^*\gamma^* \to \pi^0}(x, Q_1^2, Q_2^2) \, \phi(x, \bar{Q})$$

- $F_{\pi\gamma^*}(Q_1^2, Q_2^2) \sim 1/(Q_1^2 + Q_2^2)$ when $(Q_1^2, Q_2^2) \to \infty.$
- Consistent with pQCD prediction.
- Qualitative behavior \rightarrow consistent with the LFQM results.

Choi, Ryu and Ji, PRD 99, 076012 (2019)

• Singly virtual TFF → by setting one of the momentum transfers to zero.

¹CM, Nair, Jia, Zhao and Vary, Phys. Rev. D 104, 094034 (2021)

BLFQ 000 Mesons 0000000 00000000000000000000

Generalized Parton Distributions (GPDs) : Spin-0 Meson

Two independent GPDs at leading twist

$$H^{\mathcal{P}}(x,\zeta,t) = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle \mathcal{P}(P') | \bar{\Psi}_{q}(0)\gamma^{+}\Psi_{q}(z) | \mathcal{P}(P)\rangle |_{z^{+}=0}^{\mathbf{z}^{\perp}=0}$$
$$\frac{i\epsilon_{ij}^{\perp}q_{i}^{\perp}}{2M_{\mathcal{P}}} E_{T}^{\mathcal{P}}(x,\zeta,t) = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle \mathcal{P}(P') | \bar{\Psi}_{q}(0)i\sigma^{j+}\gamma_{5}\Psi(z)_{q} | \mathcal{P}(P)\rangle |_{z^{+}=0}^{\mathbf{z}^{\perp}=0}$$

- $H \Rightarrow$ chirally even unpolarized quark GPD
- $E_T \Rightarrow$ chirally odd; transversely polarized quark GPD
- P(P') denotes the meson momentum of initial (final) state of the meson (\mathcal{P}) .
- We choose $A^+ = 0$ and the kinematical region: 0 < x < 1 at zero skewnes $(\zeta = 0)$.

¹M. Diehl, Phys. Rept. 388, 41 (2003).

- $H_u^{\pi}(x,0) \Rightarrow$ symmetric with peak at x = 0.5
- $E_{Tu}^{\pi}(x,0) \Rightarrow$ asymmetric with peak below x = 0.5
- peak in the GPDs shift towards higher values of x
- oscillations are numerical artifacts due to longitudinal cutoff L_{\max}

¹Adhikari, CM, Nair, Xu, Jia, Zhao and Vary, [arXiv:2106.04954] accepted by Phys. Rev. D

Q

$GPDs \rightarrow Transverse Densities$

Moments of GPDs:

$$\begin{split} &\int_{0}^{1} dx \, x^{n-1} \, H^{\pi}(x, b_{\perp}^{2}) = A_{n0}^{\pi}(b_{\perp}^{2}) \,, \\ &\int_{0}^{1} dx \, x^{n-1} E_{T}^{\pi}(x, b_{\perp}^{2}) = B_{Tn0}^{\pi}(b_{\perp}^{2}) \,. \end{split}$$

• Define density

$$\rho^n(b_{\perp},s_{\perp}) = \frac{1}{2} \left[A_{n0}^{\pi}(b_{\perp}^2) - \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_{\pi}} B_{Tn0}^{\pi\prime}(b_{\perp}^2) \right],$$

• Reasonable agreement with Lattice QCD

 $^{1}\mathrm{Adhikari,\ CM,\ Nair,\ Xu,\ Jia,\ Zhao\ and\ Vary,\ Phys.Rev.D\ 104,\ 114019\ (2021)}$

Conclusions

Heavy Meson Mass Spectrum

 $N_{\rm max} = 12, K_{\rm max} = 17$

OGE $(b\overline{c})$: [Shuo Tang, et al, 2018]

IMP

Conclusions Wavefunction in Leading Fock Sector IMP $|\text{meson}\rangle = a|Q\bar{Q}\rangle + b|Q\bar{Q}g\rangle + \cdots$ $\Psi^{\mathcal{N},M_{j}}_{\{x_{i},\vec{p}^{2}_{\perp i},\lambda_{i}\}} = \sum_{\{n,m_{i}\}} \psi^{\mathcal{N}}(\{\bar{\alpha}_{i}\}) \prod_{i=1}^{N} \phi_{n_{i}m_{i}}(\vec{p}_{\perp i},b)$ $\downarrow\uparrow -\uparrow\downarrow$ dominant in $|Q\bar{Q}\rangle$ η_c η_b [___][GeV__] 1.5 1.0 0.5 Ψ^{#_#}(x,p⊥)[GeV^{−1}] 1.0 1.0 0.5 0.0 0.0 0.5 0.5 -2 -2

p⊥ [GeV]

2

0.0

> η_b narrower than η_c at x direction

2

0.0

 \succ η_b wider than η_c at x direction

p⊥ [GeV]

 $^{^{1}}$ J. Wu *et. al.*, in preparation

Conclusions

Heavy Meson Electromagnetic Form Factors

[Brodsky & de Teramond, PRD 77:056007 (2008)]

IMP $|\text{meson}\rangle = a|Q\bar{Q}\rangle + b|Q\bar{Q}g\rangle + \cdots$

 1 J. Wu $\mathit{et.}$ al., in preparation

Heavy Meson PDAs

$$|\text{meson}\rangle = a|Q\bar{Q}\rangle + b|Q\bar{Q}g\rangle + \cdots$$

 η_b narrower than η_c

 \sim

Preliminary

¹ Wu at al in propagation

69 / 60

BLFQ DOO Mesons 0000000 00000000000000000000

Helicity Asymmetry

- $q^+(x) = q(x) + \bar{q}(x)$
- The helicity asymmetry: observable for investigating the spin structure of the proton in experiments.
- Overestimated at small-*x* region.
- Gluon at initial scale is needed within BLFQ.

 $^1\mathrm{Xu},$ CM, Lan, Zhao, Li, and Vary, Phys. Rev. D 104, 094036 (2021)

Q

Mesons 0000000 000000000000000000000

Tensor Charge

• The first moment of transversity PDF :

$$g_T^q = \int dx \ h_1^q(x,\mu^2)$$

• The second moment of transversity PDF :

$$\langle x \rangle_T^{u-d} = \int dx \ x \left(h_1^u(x,\mu^2) - h_1^d(x,\mu^2) \right)$$

$$\begin{split} g_T^u &= 0.55, \, g_T^d = - \, 0.29 & \text{Dynamical gluon} \\ g_T^u &= 0.94, \, g_T^d = - \, 0.20 & \text{No Dynamical gluon} \\ g_T^u &= 0.39^{+0.18}_{-0.12}, \, g_T^d = - \, 0.25^{+0.30}_{-0.10} & \text{Extracted data} \end{split}$$

Quantity	BLFQ	Extracted data	Lattice
g_T^u	$0.94^{+0.06}_{-0.15}$	$0.39\substack{+0.18 \\ -0.12}$	0.784(28)
g_T^d	$-0.20\substack{+0.02\\-0.04}$	$-0.25\substack{+0.30\\-0.10}$	-0.204(11)
$\langle x \rangle_T^{u-d}$	$0.229^{+0.019}_{-0.048}$	—	0.203(24)
Axial Form Factor

• Provide information on spin-isospin distributions

$$\langle N(p')|A^a_{\mu}|N(p)\rangle = \bar{u}(p') \left[\gamma_{\mu} G_A(t) + \frac{(p'-p)_{\mu}}{2m} G_P(t) \right] \gamma_5 \frac{\tau^a}{2} u(p) \qquad \qquad A^a_{\mu} = \bar{q} \gamma_{\mu} \gamma_5 T^a q$$

Including the dynamic gluon, the u quark's contribution is suppressed and closer to the experimental data results.

$$\Delta \Sigma_q \approx 0.7 \qquad \Delta \Sigma_u \approx 0.86 \qquad \Delta \Sigma_d \approx 0.16 \qquad \Delta G \approx 0.13 < 0.2 \quad (\text{COMPASS})$$

0.8

0.8

≁0

74/60

Helicity GPDs with dynamical gluon

75 / 60

Int	ro	d	u	С	t	0	n	
00								

• OAM densities:

$$\begin{split} L^{\text{naive}}(b_{\perp}) &= \tilde{J}(b_{\perp}) - S(b_{\perp}) \\ L^{\text{PG}}(b_{\perp}) &= \rho_J^{\text{PG}} - S(b_{\perp}) \\ L^{\text{IMF}}(b_{\perp}) &= \rho_J^{\text{IMF}} - S(b_{\perp}) \end{split} \qquad \qquad \begin{bmatrix} \text{Polyakov} - \text{Goeke}(\text{PG}) \end{bmatrix} \\ \end{split}$$

where $\tilde{J}, \rho_J^{\text{PG}}$ and ρ_J^{IMF} are TAM densities.

$$\rho_J^{\rm PG}(b_\perp) = \frac{1}{3}\tilde{J}(b_\perp) - \frac{1}{3}b_\perp \frac{d}{db_\perp}\tilde{J}(b_\perp) \qquad ; \qquad \rho_J^{\rm IMF}(b_\perp) = \mp \frac{1}{2}b_\perp \frac{d}{db_\perp}\tilde{J}(b_\perp)$$

Lekha Adhikari and Matthias Burkardt, et al. Phys. Rev. D 94 (2016) 11, 114021

• OAM distributions from different techniques do not agree with each other.

• Qualitative nature consistent with phenomenological models ²

Y. Liu, S. Xu, CM, X. Zhao, J. P. Vary, arXiv:2202.00985 [hep-ph].
 CM, D. Chakrabarti, EPJC 75, 261 (2015); PRD 88, 073006 (2013)

Introduction 000 JFQ 00 Mesons 0000000 00000000000000000000

Angular momentum operators

• Generalized angular momentum tensor ¹:

$$J^{\mu\alpha\beta}(y) = L^{\mu\alpha\beta}(y) + S^{\mu\alpha\beta}(y)$$

 $L^{\mu\alpha\beta}$: OAM operator; $S^{\mu\alpha\beta}$: spin operator

$$L^{\mu\alpha\beta}(y) = y^{\alpha}T^{\mu\beta}(y) - y^{\beta}T^{\mu\alpha}(y)$$

 $T^{\mu\nu}$: Energy–Momentum Tensor (EMT) density associated with the system; neither gauge invariant nor symmetric.

1. The Belinfante-improved tensors: conserved and gauge invariant

$$T_{\text{Bel}}^{\mu\nu}(y) = T^{\mu\nu}(y) + \partial_{\lambda}G^{\lambda\mu\nu}(y)$$
$$J_{\text{Bel}}^{\mu\alpha\beta}(y) = J^{\mu\alpha\beta}(y) + \partial_{\lambda}\left(y^{\alpha}G^{\lambda\mu\beta}(y) - y^{\beta}G^{\lambda\mu\alpha}(y)\right)$$

where $G^{\lambda\mu\nu}$: the superpotential

$$G^{\lambda\mu\nu}(y) = \frac{1}{2} \left(S^{\lambda\mu\nu}(y) + S^{\mu\nu\lambda}(y) + S^{\nu\mu\lambda}(y) \right) = -G^{\mu\lambda\nu}(y)$$

• The total angular momentum:

$$J_{\text{Bel}}^{\mu\alpha\beta}(y) = y^{\alpha}T_{\text{Bel}}^{\mu\beta} - y^{\beta}T_{\text{Bel}}^{\mu\alpha}$$
; $T^{\mu\nu}$: symmetric

¹C. Lorcé, L. Mantovani and B. Pasquini, Phys. Lett. B 776, 38 (2018).

Intro	du	cti	on	
000				

Mesons 0000000

2 Kinetic tensors

• Ji proposed the kinetic EMT in the context of QCD:

$$T_{\rm kin}^{\mu\nu}(y) = T_{\rm kin,q}^{\mu\nu}(y) + T_{\rm kin,g}^{\mu\nu}(y)$$

 $T^{\mu\nu}_{\rm kin,q}(y), T^{\mu\nu}_{\rm kin,g}(y)$ are gauge invariant contributions.

• The kinetic generalized angular momentum tensor:

$$\begin{split} J_{\rm kin}^{\mu\alpha\beta}(y) &= L_{\rm kin,q}^{\mu\alpha\beta}(y) + S_q^{\mu\alpha\beta}(y) + J_{\rm kin,g}^{\mu\alpha\beta}(y) \\ \text{with } L_{\rm kin,q}^{\mu\alpha\beta}(y) &= y^{\alpha}T_{\rm kin,q}^{\mu\beta}(y) - y^{\beta}T_{\rm kin,q}^{\mu\alpha}(y) \\ S_q^{\mu\alpha\beta}(y) &= \frac{1}{2}\varepsilon^{\mu\alpha\beta\lambda}\bar{\psi}(y)\gamma_{\lambda}\gamma_5\psi(y) \\ J_{\rm kin,g}^{\mu\alpha\beta}(y) &= y^{\alpha}T_{\rm kin,g}^{\mu\beta}(y) - y^{\beta}T_{\rm kin,g}^{\mu\alpha}(y) \end{split}$$

- The gluon total AM can not be divided into orbital and spin contributions; it is local and gauge invariant.
- Relation between Belinfante-improved tensors and kinetic tensors:

$$T_{\rm kin,q}^{\mu\nu}(y) = T_{\rm Bel,q}^{\mu\nu}(y) - \frac{1}{2}\partial_{\lambda}S_{q}^{\lambda\mu\nu}(y) \quad ; \quad T_{\rm kin,g}^{\mu\nu}(y) = T_{\rm Bel,g}^{\mu\nu}$$
$$L_{\rm kin,q}^{\mu\alpha\beta}(y) + S_{q}^{\mu\alpha\beta}(y) = J_{\rm Bel,q}^{\mu\alpha\beta}(y) - \frac{1}{2}\partial_{\lambda}\left(y^{\alpha}S_{q}^{\lambda\mu\beta}(y) - y^{\beta}S_{q}^{\lambda\mu\alpha}(y)\right); J_{\rm kin,g}^{\mu\alpha\beta}(y) = J_{\rm Bel,g}^{\mu\alpha\beta}(y)$$

BLFC 000 Mesons 0000000 00000000000000000000

Parameterization of EMT

• For spin-1/2 target, the matrix elements of the general local asymmetric $T^{\mu\nu}$ are parametrized as

$$\begin{split} \langle P', \Lambda' | T^{\mu\nu}(0) | P, \Lambda \rangle &= \bar{u}(P', \Lambda') \left(\frac{\bar{P}^{\mu}\bar{P}^{\nu}}{M} A(t) + \frac{\bar{P}^{\mu}{}_{\iota}\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} (A + B + D)(t) \right. \\ &+ \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{M} C(t) + M g^{\mu\nu}\bar{C}(t) + \frac{\bar{P}^{\nu}{}_{\iota}\sigma^{\mu\lambda}\Delta_{\lambda}}{4M} (A + B - D)(t) \right) u(P, \Lambda) \end{split}$$

• The matrix elements of quark spin operator $S_q^{\mu\alpha\beta}(0)$ are parametrized as:

$$\langle P', \Lambda' | S_q^{\mu\alpha\beta}(0) | P, \Lambda \rangle = \frac{1}{2} \varepsilon^{\mu\alpha\beta\lambda} \bar{u}(P', \Lambda') \left(\gamma_\lambda \gamma_5 G_A^q(t) + \frac{\Delta_\lambda \gamma_5}{2M} G_P^q(t) \right) u(P, \lambda)$$

 $G^q_A(t)$: axial-vector form factor $G^q_P(t)$: induced pseudoscalar form factor

- $D_q(t) = -G_A^q(t)$; $t = -\Delta_{\perp}^2$.
- Experimentally, axial form factor is accessible through quasi-elastic neutrino scattering and pion electroproduction processes.

¹Cédric Lorcé et al., Phys. Lett. B 776 (2018) 38-47

• The Belinfante-improved TAM:

$$\begin{split} \langle J_{\text{Bel}}^{z} \rangle (b_{\perp}) &= -\iota \varepsilon^{3jk} \int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{-\iota \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \left. \frac{\partial \langle T_{\text{Bel}}^{+k} \rangle}{\partial \Delta_{\perp}^{j}} \right|_{\text{DY}} \\ &= \Lambda^{z} \int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{-\iota \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \left[J(t) + t \frac{\mathrm{d}J(t)}{\mathrm{d}t} \right] \end{split}$$

$$\begin{split} M^{z} \rangle (b_{\perp}) &= \frac{1}{2} \varepsilon^{3jk} \int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{-\iota \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \Delta_{\perp}^{l} \frac{\partial \langle S^{l+k} \rangle}{\partial \Delta_{\perp}^{j}} \\ &= -\frac{\Lambda^{z}}{2} \int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{-\iota \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \left[t \frac{\mathrm{d} G_{A}(t)}{\mathrm{d} t} \right] \end{split}$$

 $\left\langle J^{z}\right\rangle \left(b_{\perp}\right) = \left\langle J^{z}_{\mathrm{Bel}}\right\rangle \left(b_{\perp}\right) + \left\langle M^{z}\right\rangle \left(b_{\perp}\right)$

Cédric Lorcé et al., Phys. Lett. B 776 (2018) 38-47

where $J(t) = \frac{1}{2} (A(t) + B(t))$

Flavor contributions:

D

• The "naive" density: defined as the two-dimensional Fourier transform of J(t):

$$\langle J_{\rm naive}^z \rangle(b_\perp) = \Lambda^z \tilde{J}(b_\perp)$$

by a correction term

$$\langle J_{\rm corr}^z \rangle (b_\perp) = -\Lambda^z \left[\tilde{L}(b_\perp) + \frac{1}{2} b_\perp \frac{\mathrm{d}\tilde{L}(b_\perp)}{\mathrm{d}b_\perp} \right]$$

Flavor contributions:

• Monopole and quadrupole contributions to Belinfante-improved TAM:

0.04

0.03

Cédric Lorcé et al., Phys. Lett. B 776 (2018) 38-47

 $b_{\perp} \langle J_{\text{Bel}}^z \rangle$

 $b_{\perp} \langle J_{\text{Bel}}^z \rangle_{\text{monc}}$

Flavor contributions:

