Background 000000000 FH Method

Established resu

New results

Conclusions and Outlook

A lattice QCD calculation of the off-forward Compton amplitude and generalised parton distributions

Alec Hannaford Gunn

Ross Young, James Zanotti, Kadir Utku Can

For the CSSM/QCDSF/UKQCD collaboration

27th June, 2022

Alec Hannaford Gunn

GPDs from Feynman-Hellmann

CSSM/QCDSF/UKQCD collaboration

Outline		

1 Background:

What are GPDs? Why are we interested in lattice calculations?

2 Outline of method:

Novel application of Feynman-Hellmann methods

3 Established results:

Presented in AHG et al., PRD 105, 2022

4 New results

Preliminary!

Background				
•0000000	000000000	0000000	0000	000000

1 GPDs—what are they and why are they interesting?

- **2** The Feynman-Hellmann method
- Stablished results presented in AHG et al., PRD 105, 2022
- New Results
 Preliminary!
- **5** Conclusions and Outlook

GPDs from Feynman-Hellmann

Background				
00000000				
Outline of the problem				

- Extensions of parton distribution functions (PDFs), related to elastic form factors
- Contain a staggering amount of physical information: a solution to proton spin puzzle, the spatial distributions of hadron constituents, and more

However...

- Difficult to measure experimentally
- and difficult to calculate on the lattice

In this talk:

- a new lattice method to calculate GPDs (Feynman-Hellmann)
- with strong parallels to experimental measurements

 $\mathbf{b}_{\perp}(fm)$

Emission and absorption of quark in high-energy nucleon, with $P \neq P'$

Light-cone matrix element:

$$\begin{split} &\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \# \psi_q(\lambda n/2) | P \rangle \\ &= H^q(x,\xi,t) \bar{u}(P') \# u(P) \\ &+ E^q(x,\xi,t) \bar{u}(P') \frac{i\sigma^{\mu\nu} n_\mu \Delta_\nu}{2M} u(P). \end{split}$$

- *H^q* and *E^q* are helicity-conserving and -flipping GPDs (analogous *F*₁ and *F*₂).
- $t = (P' P)^2$ momentum transfer.
- x, ξ are momentum fractions.

Background			
00000000			
Measurement of C	GPDs		

- Deeply virtual Compton scattering: $e^- + p \rightarrow e^- + p + \gamma$.
- Measure the off-forward Compton amplitude
- Compton form factors at large $-q^2$

$$\mathsf{CFF} = \int_{-1}^{1} dx \left(\frac{1}{x - \xi + i\varepsilon} \pm \frac{1}{x + \xi + i\varepsilon} \right) \mathsf{GPD}$$

Difficulties:

- deconvolution problem,
- spanning kinematics,
- lack of theoretical constraints.

Lattice calculations:

- provide theoretical constraints,
- access unphysical kinematics $(\xi = 0)$,
- exclude models,

Our aim: calculate this OFCA with lattice QCD for $\xi = 0$. **Previous** calculations: focus on leading-order.

Background		
0000000		
Lattice QCD		

QCD path integral

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} A_\mu \mathcal{D} ar{\psi} \mathcal{D} \psi \mathcal{O} e^{i \mathcal{S}_{ ext{QCD}}}$$

To evaluate this numerically:

1 discrete spacetime,

2) Wick rotatation
$$t
ightarrow -i au$$
 , $e^{iS_{ ext{QCD}}}
ightarrow e^{-S^{ extsf{E}}_{ extsf{QCD}}}$,

3 generate gauge configurations according to $e^{-S_{\text{QCD}}^{E}}$.

Then, the path integral can be evaluated as a weighted sum over gauge configurations:

$$\langle \mathcal{O} \rangle \approx \frac{1}{N} \sum_{i=0}^{N} \mathcal{O}_i.$$

8 / 37

Wick rotated separation:

$$x^{2} = (-i\tau)^{2} - |\vec{x}|^{2} = -\tau^{2} - |\vec{x}|^{2} < 0.$$

All spacelike.

But parton distributions are lightlike correlation functions:

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P^{(\prime)} | \bar{\psi}_q(-\lambda n/2) \not | \psi_q(\lambda n/2) | P \rangle,$$

since $n^2 = 0$. \therefore can only calculate related quantities.

Background			
0000000000			
Hunt for lattice parton distributions			

A lot of related quantities:

- Moments from 3-pt functions
- Quasi- and pseudo-distributions
- Lattice cross sections
- Heavy-quark OPE
- and others...

GPD studies:

- Quasi: NPB 952 (2020), PRL 125 (2020), PRL 127 (2021)
- Many 3-pt calculations of leading n = 1, 2, 3 moments (insufficient for full reconstruction)

- 3-pt moments and quasi leading-order
- But in DVCS expt., hard scale relatively small: Q² < 10 GeV²
- Unknown subtraction function, S_1

From lattice OFCA, can we get:

- Q² dependence [Latt. 2021 PoS 324]
- higher-order terms [Latt. 2019 PoS 278]
- subtraction function [Latt. 2021 PoS 028]

For the forward (P = P') Compton amplitude, we have calculated these properties with Feynman-Hellmann.

Background				
00000000	000000000	0000000	0000	0000000

Summary

- GPDs contain LOTS of physical information.
- They are hard to measure from experiment.
- They are hard to calculate on the Lattice.
- We want lattice calculation of Compton amplitude (more overlap with experiment) \rightarrow GPDs

Background	FH Method			
00000000	00000000	0000000	0000	0000000

1 GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

- Stablished results presented in AHG et al., PRD 105, 2022
- New Results
 Preliminary!
- **5** Conclusions and Outlook

	FH Method		
	000000000		
Why Feynman-Hel	lmann?		

Lattice OFCA:

$$T_{\mu
u} = \sum_{z_{\mu}} e^{rac{i}{2}(q+q')\cdot z} \langle P' | T\{j_{\mu}(z)j_{\nu}(0)\} | P \rangle.$$

Requires 4-pt function:

 $\langle \chi(z_4) j_\mu(z_3) j_
u(z_2) \chi^\dagger(z_1) \rangle$

- New inversion for each (τ, τ')
- Large T: $au_{\mathsf{sink}} \gg au'$, $au_{\mathsf{srce}} \ll au$

Expensive!

Feynman-Hellmann perturbed Dirac operator: $i\not D - m \longrightarrow i\not D - m - \underbrace{\lambda_1 \mathcal{J}(q_1) - \lambda_2 \mathcal{J}(q_2)}_{\text{background fields}}$

$$\underbrace{ \sum_{j=1}^{k} \lambda_{j} \sum_{\tau_{1}} \sum_{\tau_{1}} \sum_{j \in \tau_{2}} \sum_{j \in \tau_{1}} \frac{\beta_{j}(\tau_{1})}{\beta_{j}(\tau_{1})} + \sum_{j,k} \lambda_{j} \lambda_{k} \sum_{\tau_{1} \geq \tau_{2}} \frac{\beta_{k}(\tau_{2})}{\beta_{j}(\tau_{1})} + \mathcal{O}(\lambda^{3})$$

Then $\lambda_1 \lambda_2$ term will be OFCA.

Alec Hannaford Gunn

GPDs from Feynman-Hellmann

Background	FH Method		
	00000000		
In more detail			

Calculate perturbed quark propagator:

$$S_{(\lambda_1,\lambda_2)}(x_n-x_m) = \left[M - \frac{\lambda_1}{\cos(\vec{q}_1 \cdot \vec{x})\gamma_3} - \frac{\lambda_2}{\cos(\vec{q}_2 \cdot \vec{x})\gamma_3}\right]_{n,m}^{-1}$$

Two couplings, λ_1 , λ_2 ; two momenta, \vec{q}_1 and \vec{q}_2 ; choose γ_3 , which gives T_{33} component.

The $(\lambda_1)^2$ and $(\lambda_2)^2$ terms give forward Compton amplitudes. The $\lambda_1\lambda_2$ term gives OFCA.

Alec Hannaford Gunn GPDs from Feynman-Hellmann

	FH Method		
	000000000		
Fits and signal qua	ality		

$$R_{\lambda}(\tau) \simeq 2\lambda^2 \tau rac{T_{33}}{E_N}.$$

Extract T_{33} for a given sink momentum, **p**. Now, what do we do with it?

Alec Hannaford Gunn

GPDs from Feynman-Hellmann

CSSM/QCDSF/UKQCD collaboration

Background Conclusions and Outlook Conclusions and Conclusions and Outlook Conclusions and Outlook Conclusions and Outlook Conclusions and Outlook Conclusions and Conclusions

Forward Compton amplitude:

P P

- Previously calculated with Feynman-Hellmann [CSSM/QCDSF PRL 118 (2017), PRD 102 (2020)]
- Same calculation but with one λ and \vec{q} .
- Extract $T_{33}(\vec{p}, \vec{q})$, forward Compton amplitude.

Spin-independent:

$$egin{aligned} &\mathcal{T}_{\mu
u}(p,q) = \left(-g_{\mu
u}+rac{q_{\mu}q_{
u}}{q^2}
ight)\mathcal{F}_1(\omega,Q^2) \ &+\left(p_{\mu}-rac{p\cdot q}{q^2}q_{\mu}
ight)\left(p_{
u}-rac{p\cdot q}{q^2}q_{
u}
ight)rac{\mathcal{F}_2(\omega,Q^2)}{p\cdot q}, \end{aligned}$$

$$\mathcal{F}_{1}(\omega, Q^{2}) - \mathcal{F}_{1}(0, Q^{2}) = 2\omega^{2} \int_{0}^{1} dx \frac{2xF_{1}(x, Q^{2})}{1 - x^{2}\omega^{2} - i\epsilon},$$

$$\mathcal{F}_{2}(\omega, Q^{2}) = 4\omega \int_{0}^{1} dx \frac{F_{2}(x, Q^{2})}{1 - x^{2}\omega^{2} - i\epsilon}$$

- From FH, $\mathcal{F}_{1,2}$ and subtraction function $S_1(Q^2) = \mathcal{F}_1(0, Q^2)$
- Inverse Bjorken variable, $\omega = 2\vec{p}\cdot\vec{q}/\vec{q}^2$
- DIS structure functions $F_{1,2}$ become PDFs at $Q^2 \rightarrow \infty$.

	FH Method		
	0000000000		
Parton distribution	n moments		

•

On lattice, Euclidean CA. To relate to Minkowski,

$$E_X(ec{p}{\pm}ec{q})>E_N(ec{p}), \quad \Rightarrow \quad \omega=\left|rac{2ec{p}\cdotec{q}}{ec{q}^2}
ight|<1$$

For $|\omega| < 1$,

$$\overline{\mathcal{F}}_{1}(\omega, Q^{2}) = 2\omega^{2} \int_{0}^{1} dx \frac{2xF_{1}(x, Q^{2})}{1 - x^{2}\omega^{2} - i\epsilon}$$
$$\overline{\mathcal{F}}_{1}(\omega, Q^{2}) = 4 \sum_{n=2,4,6}^{\infty} \omega^{n} M_{n}(Q^{2})$$

$$M_n(Q^2) \stackrel{Q^2 \to \infty}{\longrightarrow} \int_0^1 dx x^{n-1} q(x).$$

Euclidean Compton amplitude \rightarrow moments of physical Compton amplitude.

Background	FH Method		
	0000000000		
Perturbative expan	sion of OFCA		

Off-forward is very similar, but more complicated...

$$T_{\mu\nu} = \frac{1}{2\bar{P}\cdot\bar{q}} \left[-\left(h\cdot\bar{q}\mathcal{H}_1 + e\cdot\bar{q}\mathcal{E}_1\right)g_{\mu\nu} + \frac{1}{\bar{P}\cdot\bar{q}}\left(h\cdot\bar{q}\mathcal{H}_2 + e\cdot\bar{q}\mathcal{E}_2\right)\bar{P}_{\mu}\bar{P}_{\nu} + \mathcal{H}_3h_{\{\mu}\bar{P}_{\nu\}}\right] + \dots$$

OFCA has 18 Compton form factors, but we want to relate these to GPDs. Lots of perturbative expansions of OFCA. A classic from X. Ji, PRL 78 (1997):

$$T^{\mu
u}(P,q;P',q') = -rac{1}{2}(n^{\mu} ilde{n}^{
u}+n^{
u} ilde{n}^{\mu}-g^{\mu
u})\int_{-1}^{1}dxigg(rac{1}{x-\xi+i\epsilon}+rac{1}{x+\xi+i\epsilon}igg) \ imesigg[H(x,\xi,t)ar{u}(P')igt|hu(P)+E(x,\xi,t)ar{u}(P')rac{i\sigma^{lphaeta} ilde{n}_{lpha}\Delta_{eta}u(P)igg].$$

- But n^{μ} and \tilde{n}^{μ} are lightlike vectors.
- Almost all published expansions of OFCA use light-cone kinematics (especially for nucleon).
- But it can't be compared to a Euclidean lattice calculation.

$$T_{\mu\nu} = \frac{1}{2\bar{P}\cdot\bar{q}} \bigg[- \left(h\cdot\bar{q}\mathcal{H}_1 + e\cdot\bar{q}\mathcal{E}_1\right)g_{\mu\nu} + \frac{1}{\bar{P}\cdot\bar{q}}\left(h\cdot\bar{q}\mathcal{H}_2 + e\cdot\bar{q}\mathcal{E}_2\right)\bar{P}_{\mu}\bar{P}_{\nu} + \mathcal{H}_3h_{\{\mu}\bar{P}_{\nu\}}\bigg] + \dots$$

My master's:

- Matching non-perturbative tensor decomposition (e.g. Tarrach) to leading-order GPD moments
- Even though we're interested in non-perturbative structure, want high-energy limit $(\bar{Q}^2\to\infty)$ to guide us.

$$\begin{aligned} \mathcal{H}_{1}(\bar{\omega},t) - S_{1} &= \int_{-1}^{1} dx \frac{2x}{(x-1/\bar{\omega})^{2} + i\varepsilon} \mathcal{H}(x,t) \quad \mathcal{E}_{1}(\bar{\omega},t) + S_{1} = \int_{-1}^{1} dx \frac{2x}{(x-1/\bar{\omega})^{2} + i\varepsilon} \mathcal{E}(x,t) \\ &= 2 \sum_{n=2,4,6}^{\infty} \bar{\omega}^{n} \mathcal{A}_{n,0}(t), \ |\bar{\omega}| < 1 \\ &= 2 \sum_{n=2,4,6}^{\infty} \bar{\omega}^{n} \mathcal{B}_{n,0}(t), \ |\bar{\omega}| < 1 \end{aligned}$$

To fit GPD moments

Feynman-Hellmann

$$\sum_{\text{spins}}^{\text{Feynman-Hellmann}} \prod_{n=2,4,6}^{\infty} \bar{\omega}^{n} \Big[\underbrace{N_{\Gamma}^{A} A_{n,0}(t) + N_{\Gamma}^{B} B_{n,0}(t)}_{\text{GPD moments}} \Big] + \mathcal{O} \Big(\frac{1}{Q^{2}} \Big).$$
(55)

Background	FH Method			
00000000	00000000	0000000	0000	0000000

Summary

- Feynman-Hellmann efficient method to calculate four-point functions in lattice QCD.
- Can be extended to off-forward kinematics.
- We can extract the off-forward Compton amplitude, and relate it to GPDs.

22 / 37

Background		Established results		
00000000	000000000	•000000	0000	000000

I GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

3 Established results presented in AHG et al., PRD 105, 2022

New Results
 Preliminary!

5 Conclusions and Outlook

Background		Established results	
		0000000	
Calculation Detail	s		

N _f	$\kappa_{l} \kappa_{s}$	$L^3 imes T$	<i>a</i> [fm]	M_{π} [MeV]
2 + 1	0.1209	$32^3 imes 64$	0.07	470

- SU(3) flavour symmetric point—*u*, *d* and *s* quarks have same mass.
- Heavy pion mass: \sim 470 MeV, compared to the physical point \sim 140 MeV (π^+).

Feynman-Hellmann details:

- To isolate λ₁λ₂, we calculate perturbed propagators with:
 (λ, λ), (-λ, -λ), (λ, -λ), (-λ, λ).
- Two magnitudes: $\lambda = 0.0125, 0.025.$
- Each set of perturbed propagators, insert two momenta: \vec{q}_1 and \vec{q}_2 .
- These momenta define the kinematics accessible for the calculation.

Background	Established results	
	0000000	
Kinematics		

Our momentum scalars are:

- We always choose $|\vec{q}_1| = |\vec{q}_2|$, so $\xi = 0$.
- Momentum transfers:

$$t = -(\vec{q}_1 - \vec{q}_2)^2, \quad \bar{Q}^2 = rac{1}{4}(\vec{q}_1 + \vec{q}_2)^2.$$

t determines how off-forward, while $\bar{Q}^2 \rightarrow \infty$ isolates leading-order GPDs Note: we need to keep source/sink momenta equal magnitude: $|\vec{p}| = |\vec{p} + \vec{q}_2 - \vec{q}_1|$ Right: $\bar{\omega} = 0.8$, $\bar{Q}^2 = 25$, t = -4 (lattice units).

Background	Established results	
	0000000	
Data Sets		

Set	q ₁ , q ₂	t [GeV ²]	\bar{Q}^2 [GeV ²]	N _{meas}
#1	(1,5,1), (-1,5,1)	-1.10	7.13	996
#2	(4, 2, 2), (2, 4, 2)	-2.20	6.03	996

Note that the two data sets have different \bar{Q}^2 .

- Can compare this the forward Compton amplitude, from K. U. Can et al PRD 102 (2020).
- In those results, $Q^2 = 7.13 \text{ GeV}^2$, t = 0.

Background		Established results	
		0000000	
Applying Feynma	an-Hellmann		

By varying the sink momentum, \vec{p} , we vary scaling variable:

$$ar{\omega} = rac{4ec{
ho}\cdot(ec{q}_1+ec{q}_2)}{(ec{q}_1+ec{q}_2)^2}$$

Background		Established results	
		00000000	
Compton Amplitude			

- Red curve is forward Compton amplitude: t = 0, $Q^2 = 7.13 \text{ GeV}^2$ (PRD 102, 2020)
- up quarks, with unpolarised spin-parity projector: $T_{\uparrow} + T_{\downarrow}$

$$\overline{T}^{\mathrm{unpol}}(ar{\omega},t) = 2\sum_{n=2,4,6}^{\infty}ar{\omega}^n [A^u_{n,0}(t) + rac{t}{2m(E+m)}B^u_{n,0}(t)]$$

- Dominated by \mathcal{H} CFF, equivalently $A_{n,0}$ moments
- Decrease with -t.

	Established results	
	00000000	
Fitting Moments		

Fit our data to

$$f_{N_{\text{max}}}(\bar{\omega}) = M_2 \bar{\omega}^2 + M_4 \bar{\omega}^4 + \ldots + M_{2N_{\text{max}}} \bar{\omega}^{2N_{\text{max}}}$$

To prevent over-fitting, use MCMC with monotonic decreasing priors (not rigorous): $M_2 \ge M_4 \ge ... \ge M_{2N_{max}-2} \ge M_{2N_{max}} \ge 0$. Extract the linear combination of moments

$$M_n(t) \approx A_{n,0}(t) + rac{t}{8m^2}B_{n,0}(t).$$

- Fit $N_{\rm max} = 3$; limited by number of $\bar{\omega}$ points
- *n* = 4 moments never calculated before!
- n = 2 consistent with 3-pt moments at similar pion mass

Background	Established results	
	0000000	

Summary

- Preliminary calculation was successful
- Extracted linear combination of GPD moments ($A_{n,0}$ and $B_{n,0}$) However,
 - We would like A and B moments (equivalently H and E CFFs) separately
 - More $\bar{\omega}$ values
 - Better motivated fitting priors (not monotonic)

Background			New results	
00000000	000000000	0000000	0000	000000

I GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

3 Established results presented in AHG et al., PRD 105, 2022

4 New Results Preliminary!

5 Conclusions and Outlook

		New results	
		0000	
New data			

Set	t [GeV ²]	\bar{Q}^2 [GeV ²]	N _{meas}
	0	4.86	10000
#1	-0.29	4.79	1000
#2	-0.57	4.86	1000
#3	-1.14	4.86	1000

For $L^3 \times T = 48^3 \times 96$, $m_{\pi} = 410$ MeV.

New kinematics:

- Choose momentum transfer $\vec{q}_1 \vec{q}_2$ in same direction as EM current
- Allows use to access a linear combination of \mathcal{H}_1 and \mathcal{E}_1 (only 2 CFFs)
- Use two different spin-parity projectors—isolate each CFF.

Benefits of new calculation:

- Many more $\bar{\omega}$ values (larger lattice)
- More -t values and smaller
- Can isolate \mathcal{H}_1 and \mathcal{E}_1 and therefore A and B moments

Background		New results	
		0000	
Separating \mathcal{H} and	ε		

New kinematics:

$$\mathrm{tr}\Big\{\Gamma\bar{u}'\,\mathcal{T}_{33}u\Big\}=N_{\Gamma}^{h}\mathcal{H}_{1}+N_{\Gamma}^{e}\mathcal{E}_{1}$$

 Γ is spin-parity projector. Then, similar to elastic FFs,

$$\begin{pmatrix} \mathfrak{Re}\,\mathcal{T}_{33}^{\mathsf{unpol}}\\ \mathfrak{Im}\,\mathcal{T}_{33}^{\mathsf{pol}} \end{pmatrix} = \begin{pmatrix} \mathcal{N}_{\mathsf{unpol}}^{h} & \mathcal{N}_{\mathsf{unpol}}^{e}\\ \mathcal{N}_{\mathsf{pol}}^{h} & \mathcal{N}_{\mathsf{pol}}^{e} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{1}\\ \mathcal{E}_{1} \end{pmatrix}$$

Linear combination of ${\cal H}$ and ${\cal E}$ not as orthogonal as we'd like, but still workable

	FH Method	Established results	New results	Conclusions and Outlook
			0000	
New moments				

Model-independent GPD positivity constraints [Pobylitsa, PRD 65, 2002]:

$$ig|A_{n,0}(t)ig|\leq a_n, \quad ig|B_{n,0}(t)ig|\leq rac{2m}{\sqrt{-t}}a_n$$

- Note: different m_π and $ar Q^2pprox 5~{
 m GeV}^2$
- Different systematics between all three
- But still consistent—less so with quasi at larger -t

GPDs from Feynman-Hellmann

Background				Conclusions and Outlook
00000000	000000000	0000000	0000	000000

I GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

3 Established results presented in AHG et al., PRD 105, 2022

New Results
 Preliminary!

5 Conclusions and Outlook

Background				Conclusions and Outlook
00000000	000000000	0000000	0000	000000

Conclusion:

- New method to calculate OFCA \rightarrow GPDs
- Allows strong parallels with experiment: scaling, subtraction function, higher-twist
- Calculation of leading moments of \mathcal{H}_1 and \mathcal{E}_1

Outlook:

- Beyond leading moments: GPD model fits, inversion methods
- Off-forward analogue of \mathcal{F}_2 : test off-forward Callan-Gross—test higher-order
- More $ar{Q}^2$ values: $2-10~{
 m GeV}^2$
- More *t* values (drop equal energy condition, extend FH)

Background	FH Method	Established results		Conclusions and Outlook
00000000	000000000	0000000	0000	000000

Thank you for listening—questions?

Background		Conclusions and Outlook
		000000
\mathcal{E}_1 moments		

			Conclusions and Outlook
			0000000
Markov chain	Monte Carlo fits		

Compare fits:

- *I* is number of moments.
- Uniform priors are [0, 100]
- For $32^3 \times 64$ dataset—few $\bar{\omega}$ values.
- Yet to repeat with new data set or new priors.

Background		Conclusions and Outlook
		0000000
Subtraction Term		

OPE predicts $S_1(Q^2)
ightarrow 0$ with $Q^2
ightarrow \infty$.

Background		Conclusions and Outlook
		000000
Subtraction Term		

Subtraction function from DVCS; input for calculation of proton pressure distribution.

Varies with discretisation: see forthcoming proceedings.