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3D Tomography of the Proton (Hadrons)
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• Introduction to TMDs 

• Lattice TMDs 
• LaMET and Quasi-TMDs 

• Lorentz-invariant approach (MHENS scheme) 

• Relation between lattice and continuum TMDs 

• First lattice results 
• Collins-Soper kernel for TMD evolution 

• Soft function
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The inner proton structure has been probed through high-energy 
scattering.


High-energy proton structure and the parton model

5

Feynman’s parton model (1969):

• When the proton travels at almost the speed of light, quarks and gluons 

are “frozen” in the transverse plane due to Lorentz contraction;

• During a hard collision, the struck quark/gluon (parton) appears to the 

probe that it does not interact with its surroundings.

Richard P. Feynman
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e−
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Tomography in the 3D momentum space
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P

i = g

i = u, d, c, s, t, b
xP

xz

y

xP

⃗k ⊥

P

Collinear parton distribution 
function (PDF) fi(x)

Transverse-momentum dependent 
parton distribution (TMD) fi(x, ⃗k ⊥)

fi(x, ⃗b T) = ∫ d2kT ei ⃗k T⋅ ⃗b T fi(x, ⃗k T)

TMD in the Fourier conjugate bT-space:
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Tomography in the 3D momentum space
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Figure 5.6: Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band. Plot from Ref. [324].

and extract ⌫8 and ◆8 . This functional form of 5#% was also used in [323]. It has five free
parameters which grant a sufficient flexibility in G-space as needed for the description of
the precise LHC data. An example of distributions in (G , 1))-plane is presented in Fig. 5.6.
Depending on the value of G, the 1)-behavior apparently changes. The authors of Ref. [324]
observe (the same observation was made in Ref. [251]) that the unpolarized TMD FF gains
a large 1

2
)
-term in the nonperturbative part. It could indicate non-trivial consequences of

hadronization physics, or a tension between collinear and TMD distributions.
5.2.2 Drell-Yan and weak gauge boson production

Drell-Yan lepton pair production via either virtual photon or / boson served in prior
chapters of this handbook to set up the basic notation and concepts for TMD factorization.
Factorized in terms of a convolution of two TMD PDFs from each incoming proton at the
small transverse momentum @) as shown in Eq. (2.29a), Drell-Yan production in unpolarized
proton-proton collisions is one of the most important processes for extracting unpolarized
quark TMD PDFs.

There is a tremendous amount of experimental data for Drell-Yan production, ranging from
lower energy Fermilab experimments to the highest energy data at the LHC. The lower-energy
fixed-target Fermilab data include E605 [333] and E288 [334], while the higher-energy Fermilab
data from collider Tevatron include CDF Run I [335] and Run II [336], and D0 Run I [337] and
Run II [338, 339]. LHC data include forward /-production data from the LHCb experiment at
7 [340], 8 [341], and 13 [342] TeV, /-production data from the CMS experiment at 7 [343] and
8 [344] TeV, /-production data differential in rapidity from the ATLAS experiment at 7 [343]
and 8 [345] TeV, and off-peak (low- and high-mass) Drell-Yan data from the ATLAS experiment
at 8 TeV [345]. Finally, there is also preliminary / production data from the STAR experiment
at 510 GeV.

Earlier description of the small-@) Drell-Yan data from both fixed-target and collider Fer-
milab data within the Collins-Soper-Sterman (CSS) framework has been performed by several
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Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Unpolarized quark TMD Quark Sivers function

I. Scimemi and A. Vladimirov, JHEP 06 (2020). Cammarota, Gamberg, Kang et al. (JAM Collaboration), 
PRD 102 (2020).
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TMD processes:

TMD from experiments
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Midterm Review, Part Part II: Theory - I. Stewart �4

Parton Distributions

provide key information about 
the structure of hadrons

Semi-Inclusive DIS

electron 
p

h 

Drell-Yan Dihadron in e+e-

p p

h1 

h2 

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

h
h1

h2e-

e- e-e+

fq/P (x) fq/P (x, kT )
longitudinal longitudinal & Transverse

TMD:

� � Dh1/q(x, kT )Dh2/q(x, kT )� � fq/P (x, kT )Dh/q(x, kT ) � � fq/P (x, kT )fq/P (x, kT )

qT � Q
Fragmentation

Dh/q(x, kT )

µ+

µ�

Q, qT

HERMES, COMPASS, 
JLab, EIC, …

Fermilab, RHIC, 
LHC, …

Babar, Belle, 
BESIII, …
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Differential cross section :


• Q and Y uniquely determine xa and xb of initial state partons;


• qT is contributed from the transverse momenta of partons and radiated gluons.

dσDY

dQdYd2qT

TMD factorization for Drell-Yan processes

9

s = (PA + PB)2 , qT = |q⊥ |

qμ = (q+, q−, q⊥) , Q2 = q2 , Y =
1
2

ln
na ⋅ q
nb ⋅ q

qμxbPB + k⊥,b

xaPA + k⊥,a

⎰

⎰

na = (1,0,0,1)/ 2 , nb = (1,0,0, − 1)/ 2

xa = Qe+Y s, xb = Qe−Y s, Q, s ≫ ΛQCD
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TMD factorization for :qT = |q⊥ | ≪ Q

TMD factorization for Drell-Yan processes
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Drell-Yan process in QCD – factorization

q Leading singular integration regions (pinch surface):

Hard:  all lines off-shell by Q 

Collinear:
² lines collinear to A and B
²One “physical parton” per hadron

Soft:  all components are soft

q Collinear gluons:

² Collinear gluons have the 
polarization vector:

² The sum of the effect can be 
represented by the eikonal lines, 

which are needed to make the PDFs gauge invariant!

Drell-Yan process in QCD – factorization
q Most difficult part of factorization:

0?

0? y?

y?

All identified leading integration regions are factorizable!

²Sum over all final states to remove all poles in one-half plane

– no more pinch poles

²Deform the k± integration out of the trapped soft region

²Eikonal approximation               soft gluons to eikonal lines

– gauge links 

²Collinear factorization:  Unitarity soft factor = 1

From J. Qiu’s TMD School 2022 Lectures.
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TMD factorization for :qT = |q⊥ | ≪ Q

TMD factorization for Drell-Yan processes
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Figure 4.1: Momentum regions for TMD factorization and evolution. UV regulators like MS separate
hard momentum regions from IR collinear/soft regions. The variation of this arbitrary boundary leads
to the ⇠-RGEs. Rapidity regulators such as those reviewed in Chapter 2 define schemes for separating
collinear and soft regions from one another (e.g. ⇡, ✓, H= ,=̄), and variation of these boundaries leads to
rapidity RGEs, i.e., Collins-Soper equation. The rapidity evolution kernel has its own ⇠-RGE, capturing
variation of the scale ⇠ where the rapidity factorization/evolution occurs. Solutions of the ⇠ and
rapidity RGEs sum large logs of ratios of mass and rapidity scales of these separated regions that
appear in perturbative expansions of TMD cross sections.

For removal of rapidity divergences, various schemes were summarized in Sec. 2.4 with
corresponding scheme dependent rapidity scales; mainly depending on the implementation
of rapidity subtraction through the soft factor. For a summary of the various rapidity regulator
schemes, see Table 2.1 in Sec. 2.4.1, and Appendix D .The role of these regulators in separating
UV/IR and soft/collinear momentum regions is illustrated schematically in Fig. 4.1. The
invariance of factorized cross section 3�, with respect to these scales results in a system of
differential equations that determines the scale dependence of the TMDs. These are the TMD
evolution equations.

Both the CSS [11, 85, 88, 122] and SCET [98–104, 189] formalisms lead to a common set of
evolution equations for the generic TMD PDF defined in Eq. (2.33):

3 ln 5̃
8/?(G , b) ;⇠, ✓)
3 ln⇠

CSS= ✏@[�B(⇠); ✓/⇠2] SCET= ✏
@

⇠(⇠, ✓) , (4.12a)

% ln 5̃
8/?(G , b) ;⇠, ✓)
% ln

p
✓

=  ̃(1) ;⇠) = ✏
@

✓ (⇠, 1)) , (4.12b)

3 ̃(1) ;⇠)
3 ln⇠

= �✏ [�B(⇠)] = � 2�@cusp[�B(⇠)] , (4.12c)

where we have shown typical names given to each anomalous dimension in much of the
CSS- and SCET-based literature. These and some other common notations are summarized

dσDY

dQdYd2qT
= H ⊗ B ⊗ B ⊗ S

(Collinear) beam 
functions Soft functionHard factor

TMD Handbook, by TMD Collaboration

B

B

S

yna

ynb

(Schematic) factorization formula:
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(Collinear) beam 
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TMD Handbook, by TMD Collaboration

B

B

S

Separation of soft  and collinear  modes: (ps) (pna
, pnb

)

p2
na

∼ p2
nb

∼ p2
s ∼ q2

T , rapidity : y =
1
2

ln
p−

p+

pna
∼ Q(λ2,1,λ) , pnb

∼ Q(1,λ2, λ) , ps ∼ Q(λ, λ, λ) , λ ≪ 1

yna

ynb

(Schematic) factorization formula:



YONG ZHAO, 02/21/2022

TMD factorization for :qT = |q⊥ | ≪ Q

TMD factorization for Drell-Yan processes

11

TMD handbook 115

p�

p+

Q

Q

qT

qT

�

�, �

�, �

yn̄

yn

hard

collinear

collinear

soft

Figure 4.1: Momentum regions for TMD factorization and evolution. UV regulators like MS separate
hard momentum regions from IR collinear/soft regions. The variation of this arbitrary boundary leads
to the ⇠-RGEs. Rapidity regulators such as those reviewed in Chapter 2 define schemes for separating
collinear and soft regions from one another (e.g. ⇡, ✓, H= ,=̄), and variation of these boundaries leads to
rapidity RGEs, i.e., Collins-Soper equation. The rapidity evolution kernel has its own ⇠-RGE, capturing
variation of the scale ⇠ where the rapidity factorization/evolution occurs. Solutions of the ⇠ and
rapidity RGEs sum large logs of ratios of mass and rapidity scales of these separated regions that
appear in perturbative expansions of TMD cross sections.

For removal of rapidity divergences, various schemes were summarized in Sec. 2.4 with
corresponding scheme dependent rapidity scales; mainly depending on the implementation
of rapidity subtraction through the soft factor. For a summary of the various rapidity regulator
schemes, see Table 2.1 in Sec. 2.4.1, and Appendix D .The role of these regulators in separating
UV/IR and soft/collinear momentum regions is illustrated schematically in Fig. 4.1. The
invariance of factorized cross section 3�, with respect to these scales results in a system of
differential equations that determines the scale dependence of the TMDs. These are the TMD
evolution equations.

Both the CSS [11, 85, 88, 122] and SCET [98–104, 189] formalisms lead to a common set of
evolution equations for the generic TMD PDF defined in Eq. (2.33):

3 ln 5̃
8/?(G , b) ;⇠, ✓)
3 ln⇠

CSS= ✏@[�B(⇠); ✓/⇠2] SCET= ✏
@

⇠(⇠, ✓) , (4.12a)

% ln 5̃
8/?(G , b) ;⇠, ✓)
% ln

p
✓

=  ̃(1) ;⇠) = ✏
@

✓ (⇠, 1)) , (4.12b)

3 ̃(1) ;⇠)
3 ln⇠

= �✏ [�B(⇠)] = � 2�@cusp[�B(⇠)] , (4.12c)

where we have shown typical names given to each anomalous dimension in much of the
CSS- and SCET-based literature. These and some other common notations are summarized

dσDY

dQdYd2qT
= H ⊗ B ⊗ B ⊗ S

(Collinear) beam 
functions Soft functionHard factor

TMD Handbook, by TMD Collaboration

B

B

S
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(Schematic) factorization formula:
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• Beam function:

TMD definition

12

f TMD
i (x, ⃗b T, μ, ζ) = lim

ϵ→0
ZUV(ϵ, μ, xP+) lim

τ→0
Bi(x, ⃗b T, ϵ, τ, xP+)Δi

S(bT, ϵ, τ)

UV divergence regulator

Rapidity divergence regulator

Soft factor

• Soft function :

tz

TMD handbook 40

b

t

z

s

b-

T
s

Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

tz

P

Collins-Soper scale: ζ = 2(xP+e−yn)2

nb
na

nb
na

Hadronic matrix element Vacuum matrix element

Ebert, Stewart and YZ, JHEP 09 (2019)
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Rapidity divergences

Collins-Soper scale: ζ = 2(xP+e−yn)2

nb
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nb
na

Hadronic matrix element Vacuum matrix element

Ebert, Stewart and YZ, JHEP 09 (2019)
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Many different schemes for regulating rapidity divergences:


Scheme-independent TMD factorization:
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Wilson lines off the light-cone: 
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(2005).

For reviews see also 
• Ebert, Stewart and YZ, JHEP 09 (2019); 
• TMD Handbook, by TMD collaboration.
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• For , can be perturbatively matched onto collinear PDFs; 

• For , becomes intrinsically non-perturbative, which motivates first-principles calculations.
bT ≪ Λ−1

QCD
bT ∼ Λ−1

QCD



YONG ZHAO, 02/21/2022

Overview of the continuum and lattice schemes
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Figure 2: Generic staple-shaped Wilson line defined in eq. (2.4). Black double-lines extend
along ⌘v, and the blue segment along b � � closes the staple. For certain choices of �, red
points can be cusps. Edges may extend along the conjugate direction P , which is not shown.

hadrons; as well as a vacuum matrix element (the soft function). These matrix elements
involve open and closed staple-shaped Wilson lines, for which we develop a generic notation.
Let us first define a Wilson line along a path � in color representation R as:

W
R[�] = P exp


ig

Z

�
dxµAa

µ(x)T
a
R

�
, (2.3)

where R = q in the fundamental and R = g in the adjoint representation. It is useful to
define a general class of Wilson lines using the three-sided staple shape shown in figure 2,

W
R
A (b, ⌘v, �) = W

R
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2
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2
+ ⌘v �
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2
! �
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2
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�

2
! �

b

2

�
. (2.4)

The length of the staple is relevant for its renormalization properties; here we have

Lstaple = |⌘v � �/2|+ |⌘v + �/2|+ |b� �| , (2.5)

where the length of a four-vector is given by |X| =
p

|X2|. At the red points in figure 2,
the staple has cusp angles �±, which can be computed from

cosh �± =
(⌘v ± �/2) · (b� �)

|⌘v ± �/2||b� �|
, (2.6)

where for space-like separations �± 2 [�i⇡, i⇡].2 Generic quark and gluon beam function
correlators take the form

⌦[�]

qi/h
(b, P, ✏, ⌘v, �) =

D
h(P )

���q̄i
⇣
b
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⌘�
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A (b, ⌘v, �)qi

⇣
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⌘���h(P )
E
,
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g/h (b, P, ✏, ⌘v, �) =

D
h(P )

���Gµ⌫
⇣
b

2

⌘
W

A
A (b, ⌘v, �)G⇢�

⇣
�
b

2

⌘���h(P )
E
. (2.7)

In eq. (2.7), qi(x) is a quark field of flavor i, and G
µ⌫(x) is the gluon field strength tensor.

The quark and gluon fields are spatially separated by b, which is Fourier-conjugate to
the momentum of the struck parton. In the quark correlator, � denotes a generic Dirac

2Note that we develop our generic TMD framework with a three-sided staple. Adding more than three
sides will induce extra Wilson line cusps, that create additional complications for renormalization.
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matrix elements involve open and closed staple-shaped Wilson lines, for which we introduce
a generic notation. First, we define a Wilson line along a path � in color representation R:

W
R[�] = P exp


ig

Z

�
dxµAa

µ(x)T
a
R

�
, (2.3)

where R = F in the fundamental and R = A in the adjoint representation. It is useful to
define a general class of Wilson lines using the three-sided shape shown in Fig. 2,
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The length of the staple is relevant for its renormalization properties; here we have Lstaple =

|⌘v� �/2|+ |⌘v+ �/2|+ |b� �|, where the length of a four vector is given by |X| =
p
|X2|.

At the red points, the staple also has cusp angles �±, which can be computed from

cosh �± =
(⌘v ± �/2) · (b� �)

|⌘v ± �/2||b� �|
, (2.5)

where for space-like separations �± 2 [�i⇡, i⇡]. Generic quark and gluon beam function
correlators take the form
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In eq. (2.6), q(x) is a quark field of flavor q and G
µ⌫(x) is the gluon field strength tensor.

The quark and gluon fields are spatially separated by b, which is Fourier-conjugate to the
momentum of the struck parton. In the quark correlator, � denotes a generic Dirac struc-
ture, while for the gluon correlator µ, ⌫, ⇢,� are Lorentz indices. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize
the longitudinal and transverse segments of the Wilson line, which we illustrate in Fig. 2.
Finally, we define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
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, (2.7)
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matrix elements involve open and closed staple-shaped Wilson lines, for which we introduce
a generic notation. First, we define a Wilson line along a path � in color representation R:

W
R[�] = P exp


ig
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dxµAa

µ(x)T
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R
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, (2.3)

where R = F in the fundamental and R = A in the adjoint representation. It is useful to
define a general class of Wilson lines using the three-sided shape shown in Fig. 2,

W
R
A (b, ⌘v, �) = W

R


b

2
!

b

2
+ ⌘v �

�

2
! �

b

2
+ ⌘v +

�

2
! �

b

2

�
. (2.4)

The length of the staple is relevant for its renormalization properties; here we have Lstaple =

|⌘v� �/2|+ |⌘v+ �/2|+ |b� �|, where the length of a four vector is given by |X| =
p
|X2|.

At the red points, the staple also has cusp angles �±, which can be computed from

cosh �± =
(⌘v ± �/2) · (b� �)

|⌘v ± �/2||b� �|
, (2.5)

where for space-like separations �± 2 [�i⇡, i⇡]. Generic quark and gluon beam function
correlators take the form
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In eq. (2.6), q(x) is a quark field of flavor q and G
µ⌫(x) is the gluon field strength tensor.

The quark and gluon fields are spatially separated by b, which is Fourier-conjugate to the
momentum of the struck parton. In the quark correlator, � denotes a generic Dirac struc-
ture, while for the gluon correlator µ, ⌫, ⇢,� are Lorentz indices. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize
the longitudinal and transverse segments of the Wilson line, which we illustrate in Fig. 2.
Finally, we define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
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h
S
R(b, ⌘v, ⌘̄v̄)
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matrix elements involve open and closed staple-shaped Wilson lines, for which we introduce
a generic notation. First, we define a Wilson line along a path � in color representation R:

W
R[�] = P exp


ig

Z

�
dxµAa

µ(x)T
a
R

�
, (2.3)

where R = F in the fundamental and R = A in the adjoint representation. It is useful to
define a general class of Wilson lines using the three-sided shape shown in Fig. 2,

W
R
A (b, ⌘v, �) = W

R


b

2
!

b

2
+ ⌘v �

�

2
! �

b

2
+ ⌘v +

�

2
! �

b

2

�
. (2.4)

The length of the staple is relevant for its renormalization properties; here we have Lstaple =

|⌘v� �/2|+ |⌘v+ �/2|+ |b� �|, where the length of a four vector is given by |X| =
p
|X2|.

At the red points, the staple also has cusp angles �±, which can be computed from

cosh �± =
(⌘v ± �/2) · (b� �)

|⌘v ± �/2||b� �|
, (2.5)

where for space-like separations �± 2 [�i⇡, i⇡]. Generic quark and gluon beam function
correlators take the form
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In eq. (2.6), q(x) is a quark field of flavor q and G
µ⌫(x) is the gluon field strength tensor.

The quark and gluon fields are spatially separated by b, which is Fourier-conjugate to the
momentum of the struck parton. In the quark correlator, � denotes a generic Dirac struc-
ture, while for the gluon correlator µ, ⌫, ⇢,� are Lorentz indices. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize
the longitudinal and transverse segments of the Wilson line, which we illustrate in Fig. 2.
Finally, we define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1
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Figure 3: Wilson line structure of the soft function, eq. (2.8) for ⌘, ⌘̄ < 0. Figure adapted
from ref. [63].

structure, while for the gluon correlator µ, ⌫, ⇢, and � are Lorentz indices. See refs. [40, 67]
for decompositions of different choices of � into independent spin structures for quark
TMDs, and refs. [68, 69] for the decomposition for gluon TMDs. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize the
longitudinal and transverse segments of the Wilson line, which we illustrate in figure 2.

We define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
E
, (2.8)

where the trace is over color. The color averaging factor dR takes values dq = Nc and
dg = N

2
c � 1. The soft Wilson line is given by

S
R(b, ⌘v, ⌘̄v̄) = W
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as shown in figure 3. S consists of two beam function staples glued together at the points
±b/2; the long sides of the staples run along the ⌘̄v̄ and ⌘v directions. The dependence
on two conjugate directions arises from the appearance of two TMDs in the physical cross
section in eq. (2.2). The length of the soft function path is L = 2|⌘̄v̄|+ 2|⌘v|+ 2|b|.

We define the transverse direction with respect to the plane spanned by P and v, taking
P? = v? = 0. Formally, this can be expressed as b

µ
? = g

µ⌫
? b⌫ with

g
µ⌫
? = g
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1 + ⇣̂2
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⌫
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v
⌫ + v

µ
P

⌫
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, ⇣̂ =
v · Pp
|v2|P 2

. (2.10)

We always take v and P to span the same plane as v and v̄. It follows that v? = v̄? = 0.
Our unified notation facilitates the comparison of different TMD schemes, particularly

when we examine their Lorentz invariants. In the most generic case, the beam function

– 8 –

v

?

b� �

�
b
2

b
2

�
b
2 + ⌘v + �

2

b
2 + ⌘v �

�
2

Figure 2: Generic staple-shaped Wilson line structure as defined by eq. (2.4). The black
double-lines extend along ⌘v, and the blue segments along b�� close the staple. Depending
on the choice of �, there can be cusps at any of the red points. Edges may have extent
along the conjugate direction P , which is not shown.
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W
R[�] = P exp


ig

Z

�
dxµAa

µ(x)T
a
R

�
, (2.3)
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The length of the staple is relevant for its renormalization properties; here we have Lstaple =
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as shown in figure 3. S consists of two beam function staples glued together at the points
±b/2; the long sides of the staples run along the ⌘̄v̄ and ⌘v directions. The dependence
on two conjugate directions arises from the appearance of two TMDs in the physical cross
section in eq. (2.2). The length of the soft function path is L = 2|⌘̄v̄|+ 2|⌘v|+ 2|b|.
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vμ = nμ
B(yB) ≡ nμ

b − e2yBnμ
a = (−e2yB,1,0⊥)

nμ(yn) ≡ (1, − e−2yn,0⊥)

δμ = (0,b−,0⊥)

BC
q/h(x, ⃗b T, ϵ, yP − yB) = ∫

db−

2π
e−ib−(xP+)

× Ω[γ+]
q/h [b, P, ϵ, −∞nB, b−nb]

f C
i/h(x, ⃗b T, μ, ζ) = lim

ϵ→0
ZUV(ϵ, μ, ζ)

× lim
yB→−∞

BC
i/h(x, ⃗b T, ϵ, yP − yB)
SC(bT, ϵ,2(yn − yB))

ζ = 2(xP+e−yn)2 = x2m2
he2(yP−yn)

b = (0,b−, b⊥) δ = b−nb

∝ e−γq
ζ (bT,ϵ)(yP−yB) , e−γq

ζ (bT,ϵ)(2yn−2yB)Rapidity divergences

Pnb

na

b⊥

nB(yB)

b−

2

−
b−

2

nB(yB)
n(yn)

n(y′ n)

BC

S
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Collins scheme
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vμ = nμ
B(yB) ≡ nμ

b − e2yBnμ
a = (−e2yB,1,0⊥)

nμ(yn) ≡ (1, − e−2yn,0⊥)

δμ = (0,b−,0⊥)

BC
q/h(x, ⃗b T, ϵ, yP − yB) = ∫

db−

2π
e−ib−(xP+)

× Ω[γ+]
q/h [b, P, ϵ, −∞nB, b−nb]

f C
i/h(x, ⃗b T, μ, ζ) = lim

ϵ→0
ZUV(ϵ, μ, ζ)

× lim
yB→−∞

BC
i/h(x, ⃗b T, ϵ, yP − yB)
SC(bT, ϵ,2(yn − yB))

ζ = 2(xP+e−yn)2 = x2m2
he2(yP−yn)
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Figure 4.1: Momentum regions for TMD factorization and evolution. UV regulators like MS separate
hard momentum regions from IR collinear/soft regions. The variation of this arbitrary boundary leads
to the ⇠-RGEs. Rapidity regulators such as those reviewed in Chapter 2 define schemes for separating
collinear and soft regions from one another (e.g. ⇡, ✓, H= ,=̄), and variation of these boundaries leads to
rapidity RGEs, i.e., Collins-Soper equation. The rapidity evolution kernel has its own ⇠-RGE, capturing
variation of the scale ⇠ where the rapidity factorization/evolution occurs. Solutions of the ⇠ and
rapidity RGEs sum large logs of ratios of mass and rapidity scales of these separated regions that
appear in perturbative expansions of TMD cross sections.

For removal of rapidity divergences, various schemes were summarized in Sec. 2.4 with
corresponding scheme dependent rapidity scales; mainly depending on the implementation
of rapidity subtraction through the soft factor. For a summary of the various rapidity regulator
schemes, see Table 2.1 in Sec. 2.4.1, and Appendix D .The role of these regulators in separating
UV/IR and soft/collinear momentum regions is illustrated schematically in Fig. 4.1. The
invariance of factorized cross section 3�, with respect to these scales results in a system of
differential equations that determines the scale dependence of the TMDs. These are the TMD
evolution equations.

Both the CSS [11, 85, 88, 122] and SCET [98–104, 189] formalisms lead to a common set of
evolution equations for the generic TMD PDF defined in Eq. (2.33):

3 ln 5̃
8/?(G , b) ;⇠, ✓)
3 ln⇠

CSS= ✏@[�B(⇠); ✓/⇠2] SCET= ✏
@

⇠(⇠, ✓) , (4.12a)

% ln 5̃
8/?(G , b) ;⇠, ✓)
% ln

p
✓

=  ̃(1) ;⇠) = ✏
@

✓ (⇠, 1)) , (4.12b)

3 ̃(1) ;⇠)
3 ln⇠

= �✏ [�B(⇠)] = � 2�@cusp[�B(⇠)] , (4.12c)

where we have shown typical names given to each anomalous dimension in much of the
CSS- and SCET-based literature. These and some other common notations are summarized

f TMD
i/hA

f TMD
j/hB

yn
yna

ynb

b = (0,b−, b⊥) δ = b−nb

∝ e−γq
ζ (bT,ϵ)(yP−yB) , e−γq

ζ (bT,ϵ)(2yn−2yB)Rapidity divergences

Pnb

na

b⊥

nB(yB)

b−

2

−
b−

2

nB(yB)
n(yn)

n(y′ n)

BC

S

n(yP)
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Large Rapidity (LR) scheme

18

f LR
i/h (x, ⃗b T, μ, ζ, yP − yB)

= lim
−yB≫1

lim
ϵ→0

Z B
UV(ϵ, μ)

ZS
UV(ϵ, μ,2yn − 2yB)

×
BC

i/h(x, ⃗b T, ϵ, yP − yB)
SC(bT, ϵ,2(yn − yB))

b = (0,b−, b⊥) δ = b−nb Ebert, Schindler, Stewart and YZ, 2201.08401. 

Reversed order of limits:

nμ(yn) ≡ (1, − e−2yn,0⊥)

Pnb

na

b⊥

nB(yB)

b−

2

−
b−

2

nB(yB)
n(yn)

n(y′ n)

BC

S

n(yP)
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• Introduction to TMDs 

• Lattice TMDs 
• LaMET and Quasi-TMDs 

• Lorentz-invariant approach (MHENS scheme) 

• Relation between lattice and continuum TMDs 

• First lattice results 
• Collins-Soper kernel for TMD evolution 

• Soft function

Outline
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Lattice gauge theory: a systematically improvable approach to 
solve non-perturbative QCD.

Lattice QCD

20

lattice 
spacing a}

lattice size L, 
e.g., L=32,48.

Simulating real-time dynamics has been extremely 
difficult due to the issue of analytical continuation. 🙁

z + ct = 0
z − ct ≠ 0

Imaginary time: t → iτ O(iτ) ?→ O(t)
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Large-Momentum Effective Theory (LaMET)

21

PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on the 

lattice

f̃(x, Pz)

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

X. Ji, PRL 110 (2013)
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Large-Momentum Effective Theory (LaMET)
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Related by Lorentz boost

z

t
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z/2�z/2

� �zp
2

�zp
2
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X. Ji, PRL 110 (2013)
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 
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f(x) Quasi-PDF :
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t
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✘
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• Quasi-PDF: ;


• PDF: implying .

Pz ≪ Λ
Pz = ∞, Pz ≫ Λ

Large-Momentum Effective Theory (LaMET)

22

• The limits  and  are not usually exchangeable;


• For , the infrared (nonperturbative) physics is not affected, 
which allows for an effective field theory matching.

Pz ≪ Λ Pz ≫ Λ
Pz ≫ ΛQCD

f̃(x, Pz, Λ) = C (x, Pz /μ, Λ/Pz) ⊗ f(x, μ) + O(
Λ2

QCD

P2
z

)
Perturbative matching Power corrections

• X. Ji, PRL 110 (2013); SCPMA57 (2014).  
• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014); 
• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

: the ultraviolet lattice cutoff, Λ ∼ 1/a
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A state-of-the-art calculation of the pion valence quark PDF with 
fine lattices, large momentum and NNLO matching:

LaMET calculation of the collinear PDFs

23

4

FIG. 3. The PDFs obtained from the qPDFs with NNLO
matching at di↵erent P

z = nz ⇥ 0.48 GeV.

smaller x as P
z increases. The size of NNLO correction is

in general smaller than that of the NLO correction, which
indicates good perturbative convergence, a crucial crite-
rion for precision calculation. Besides, we also find that
the uncertainty from factorization scale variation is re-
duced at NNLO. As x ! 0, the qPDF is regular because
of the exponential extrapolation, while the matching cor-
rection makes it divergent, which is a sign that resumma-
tion of small-x logarithms is needed. A resummation of
large logarithms is also necessary as x ! 1 [33]. Since the
resummation e↵ects are important only in the end-point
regions, they are not considered in this analysis.

Then we compare the PDFs obtained at di↵erent P
z

with NNLO matching in Fig. 3. At moderate x, the
P

z-dependence is remarkably reduced, and the results
appear to converge for P

z
� 1.45 GeV, which strongly

indicates that the perturbative matching allows for re-
liable predictions. According to Eq. (7), there should
still be power corrections that are enhanced in both the
x ! 0 and x ! 1 regions, as one can see that each
PDF curve has a small nonvanishing tail at x � 1 which
decreases with P

z. To estimate the size of power cor-
rections, we fit the PDFs obtained at a = 0.04 fm, P

z =
{1.45, 1.94, 2.42} GeV and a = 0.06 fm, P

z = {1.72, 2.15}

GeV to the ansatz fv(x) + ↵(x)/P
2
z

for each fixed x,
where we ignore the a-dependence as the O(a2

P
2
z
) ef-

fect in the matrix elements has been shown to be less
than 1% [25]. Since the least-�2 fit is mainly determined
by the data sets at lower P

z with smaller statistical er-
rors, which have larger power corrections, we use the re-
sult at P

z = 2.42 GeV instead of the fitted fv(x) as
our final prediction for the PDF. The relative size of the
power correction is estimated to be ↵(x)/[P 2

z
fv(x)] . 0.1

for 0.01 < x < 0.80 and ↵(x)/[P 2
z
fv(x)] . 0.05 for

0.01 < x < 0.70 at P
z = 2.42 GeV. It is surprising

that the results are insensitive to P
z for x as small as

0.01, which can be explained by the fact that the qPDF
contributes to the PDF at larger x under perturbative
matching. However, it must be pointed out that the
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matching at di↵erent P

z = nz ⇥ 0.48 GeV.

the infinite momentum frame, and the qPDF evolves to
smaller x as P

z increases. The size of NNLO correction is
in general smaller than that of the NLO correction, which
indicates good perturbative convergence, a crucial crite-
rion for precision calculation. Besides, we also find that
the uncertainty from factorization scale variation is re-
duced at NNLO. As x ! 0, the qPDF is regular because
of the exponential extrapolation, while the matching cor-
rection makes it divergent, which is a sign that resumma-
tion of small-x logarithms is needed. A resummation of
large logarithms is also necessary as x ! 1 [33]. Since the
resummation e↵ects are important only in the end-point
regions, they are not considered in this analysis.

Then we compare the PDFs obtained at di↵erent P
z

with NNLO matching in Fig. 3. At moderate x, the
P

z-dependence is remarkably reduced, and the results
appear to converge for P

z
� 1.45 GeV, which strongly

indicates that the perturbative matching allows for re-
liable predictions. According to Eq. (7), there should
still be power corrections that are enhanced in both the
x ! 0 and x ! 1 regions, as one can see that each PDF
curve has a small nonvanishing tail at x � 1 which de-
creases with P

z (see also App. C 3). To estimate the
size of power corrections, we fit the PDFs obtained at
a = 0.04 fm, P

z = {1.45, 1.94, 2.42} GeV and a = 0.06
fm, P

z = {1.72, 2.15} GeV to the ansatz fv(x)+↵(x)/P
2
z

for each fixed x, where we ignore the a-dependence as the
O(a2

P
2
z
) e↵ect in the matrix elements has been shown to

be less than 1% [25]. Since the least-�2 fit is mainly de-
termined by the data sets at lower P

z with smaller statis-
tical errors, which have larger power corrections, we use
the result at P

z = 2.42 GeV instead of the fitted fv(x) as
our final prediction for the PDF. The relative size of the
power correction is estimated to be ↵(x)/[P 2

z
fv(x)] . 0.1

for 0.01 < x < 0.80 and ↵(x)/[P 2
z
fv(x)] . 0.05 for

0.01 < x < 0.70 at P
z = 2.42 GeV. It is surprising

that the results are insensitive to P
z for x as small as

0.01, which can be explained by the fact that the qPDF
contributes to the PDF at larger x under perturbative
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FIG. 4. Comparison of our prediction of fv(x) to global fits
and BNL20. The shaded regions x < 0.03 and x > 0.8 are
excluded by requiring that the estimates of O(↵3

s) and power
corrections be smaller than 5% and 10%, respectively.

matching. However, it must be pointed out that the
smallness here is only relative, as the size of ↵(x)/P

2
z

still
increases as x ! 0. To further verify this, we also calcu-
late the PDF from the qPDF with a power-law (A/|�|

d)
extrapolation, and find that the results are almost iden-
tical to those from the exponential extrapolation even at
x = 0.01, so we simply use the latter to proceed.

Our final prediction for fv(x) (BNL-ANL21) is shown
in Fig. 4. The central value is obtained from the qPDF
at a = 0.04 fm, zS = 0.24 fm, zL = 0.92 fm, µ = 2.0
GeV and P

z = 2.42 GeV with exponential extrapolation
and NNLO matching. The red band represents the
statistical error, and the light purple band stands for the
systematic error from scale variation, which is obtained
by repeating the same procedure for µ = 1.4 and 2.8
GeV and evolving the matched results to µ = 2.0 GeV
with the NLO DGLAP equation. We demand that the
relative O(↵3

s
) matching correction at µ = 2.0 GeV

be smaller than 5%, which propagates to  37% NLO
and  14% NNLO corrections and excludes the regions
x < 0.03 and x > 0.88. Combining the estimates of
power corrections and the statistical and scale-variation
errors, we determine the PDF at 0.03 . x . 0.80 with
5–20% uncertainty. Our result is in good agreement with
the global fits by xFitter [35] and JAM21nlo [36] within
the claimed region, but deviates from the GRVPI1 [34]
and ASV [37] fits. When compared to a previous analysis
of the same lattice data (BNL20) [25] which used the
NLO OPE in coordinate space and a parameterization
of the PDF, our x-space calculation shows considerably
reduced uncertainties, but still agrees within errors.

In summary, we have performed a state-of-the-art lat-
tice QCD calculation of the x-dependence of the pion
valence quark PDF, where we developed a simple pro-
cedure to renormalize the qPDF in the hybrid scheme
and match it to the MS PDF at NNLO accuracy. With
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and BNL20. The shaded regions x < 0.03 and x > 0.8 are
excluded by requiring that the estimates of O(↵3

s) and power
corrections be smaller than 5% and 10%, respectively.

smallness here is only relative, as the size of ↵(x)/P
2
z

still
increases as x ! 0. To further verify this, we also calcu-
late the PDF from the qPDF with a power-law (A/|�|

d)
extrapolation, and find that the results are almost iden-
tical to those from the exponential extrapolation even at
x = 0.01, so we simply use the latter to proceed.

Our final prediction for fv(x) (BNL-ANL21) is shown
in Fig. 4. The central value is obtained from the qPDF
at a = 0.04 fm, zS = 0.24 fm, zL = 0.92 fm, µ = 2.0
GeV and P

z = 2.42 GeV with exponential extrapolation
and NNLO matching. The red band represents the
statistical error, and the light purple band stands for the
systematic error from scale variation, which is obtained
by repeating the same procedure for µ = 1.4 and 2.8
GeV and evolving the matched results to µ = 2.0 GeV
with the NLO DGLAP equation. We demand that the
relative O(↵3

s
) matching correction at µ = 2.0 GeV

be smaller than 5%, which propagates to  37% NLO
and  14% NNLO corrections and excludes the regions
x < 0.03 and x > 0.88. Combining the estimates of
power corrections and the statistical and scale-variation
errors, we determine the PDF at 0.03 . x . 0.80 with
5–20% uncertainty. Our result is in good agreement with
the global fits by xFitter [35] and JAM21nlo [36] within
the claimed region, but deviates from the GRVPI1 [34]
and ASV [37] fits. When compared to a previous analysis
of the same lattice data (BNL20) [25] which used the
NLO OPE in coordinate space and a parameterization
of the PDF, our x-space calculation shows considerably
reduced uncertainties, but still agrees within errors.

In summary, we have performed a state-of-the-art lat-
tice QCD calculation of the x-dependence of the pion
valence quark PDF, where we developed a simple pro-
cedure to renormalize the qPDF in the hybrid scheme
and match it to the MS PDF at NNLO accuracy. With
two fine lattice spacings, we observed that the final re-

Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, 2112.02208.



YONG ZHAO, 02/21/2022

Quasi-TMD
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η̃ ̂z

η̃ ̂z

b⊥

b̃μ = (0,bx
T, by

T, b̃z) δ = b̃z ̂z = (0,0,0,b̃z)

Quasi-beam function:

Quasi-soft function?

Naive quasi soft function:

• Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019); 
• M. Ebert, I. Stewart, YZ, PRD99 (2019), JHEP09 (2019).
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Figure 9: The bent quasi soft function. The impact parameter ~bT is aligned with the x

axis.

subtraction cancels the divergence in L/bT . It remains to consider S̃(1)
z/�z, given in Eq. (4.8).

Its subtraction from B̃q adds a single ln(b2Tµ
2
/b

2
0), which is exactly the leftover logarithm

found in the relation between the naive quasi-TMDPDF and TMDPDF in Eq. (4.18). In
conclusion, it thus appears to be precisely the interaction between the +ẑ and �ẑ part of
the naive soft function that is spoiling the matching of infrared logarithms.

With these motivations and observations we can define a bent quasi soft function which
gives a valid matching result between quasi-TMDPDF and TMDPDF at one-loop order.
Crucially, it must still cancel the L/bT divergence in the quasi beam function and after
combination with the quasi beam function produce the same logarithms in bT as the TMD-
PDF. More concretely, we can demand the Wilson line structure in the z sector to match
the soft-expanded (bz = 0) structure of the naive quasi beam function to ensure the can-
cellation of rapidity divergences. Given these restrictions we define the “bent” soft function
as

S̃bent(bT , a, L) =
1

Nc

⌦
0
��Tr

�
S
†

ẑ(
~bT ;L)S�n̄?(

~bT ;L)ST (Ln̄?;~bT ,~0T )

⇥ S
†

�n̄?
(~0T ;L)Sẑ(~0T ;L)S

†

T

�
�Lẑ;~bT ,~0T

� ��0
↵
, (4.26)

where n̄
µ
?

is the transverse unit vector orthogonal to n
µ
?
= b

µ
?
/bT and ẑ. Fig. 9 illustrates

the Wilson line path in Eq. (4.26) and compares it to the path for naive quasi soft function
defined in Eq. (3.24).

Above we deduced that the failure of a perturbative one-loop matching between quasi-
TMDPDF and TMDPDF could be traced to soft diagrams mediating exchange between
Wilson lines along the +ẑ and �ẑ directions. These diagrams precisely vanish for the bent
soft function due to n̄? · n? = n̄? · ẑ = 0, while all other diagrams are not affected by the

– 34 –
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subtraction cancels the divergence in L/bT . It remains to consider S̃(1)
z/�z, given in Eq. (4.8).

Its subtraction from B̃q adds a single ln(b2Tµ
2
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2
0), which is exactly the leftover logarithm

found in the relation between the naive quasi-TMDPDF and TMDPDF in Eq. (4.18). In
conclusion, it thus appears to be precisely the interaction between the +ẑ and �ẑ part of
the naive soft function that is spoiling the matching of infrared logarithms.

With these motivations and observations we can define a bent quasi soft function which
gives a valid matching result between quasi-TMDPDF and TMDPDF at one-loop order.
Crucially, it must still cancel the L/bT divergence in the quasi beam function and after
combination with the quasi beam function produce the same logarithms in bT as the TMD-
PDF. More concretely, we can demand the Wilson line structure in the z sector to match
the soft-expanded (bz = 0) structure of the naive quasi beam function to ensure the can-
cellation of rapidity divergences. Given these restrictions we define the “bent” soft function
as
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where n̄
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is the transverse unit vector orthogonal to n
µ
?
= b

µ
?
/bT and ẑ. Fig. 9 illustrates

the Wilson line path in Eq. (4.26) and compares it to the path for naive quasi soft function
defined in Eq. (3.24).

Above we deduced that the failure of a perturbative one-loop matching between quasi-
TMDPDF and TMDPDF could be traced to soft diagrams mediating exchange between
Wilson lines along the +ẑ and �ẑ directions. These diagrams precisely vanish for the bent
soft function due to n̄? · n? = n̄? · ẑ = 0, while all other diagrams are not affected by the
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• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• M. Ebert, I. Stewart, YZ, JHEP09 (2019).

Neither can be boosted to the soft 
function in TMD factorization. 🙁

B̃i/h(x, ⃗b T, a, η̃, xP̃z) , P̃z ≫ mh
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Naive Quasi-TMD:


Conjectured factorization relation to the physical TMD:

Quasi-TMD

25

f̃i/h(x, ⃗b T, μ, xP̃z) = lim
a → 0
η̃ → ∞

Zuv(a, μ)
B̃i/h(x, ⃗b T, a, η̃, xP̃z)

S̃naive(bT, a, η̃)

f̃ naive
ns (x, ⃗b T, μ, xP̃z) = Cns(xP̃z, μ) gq

S (bT, μ) exp[ 1
2

γq
ζ (bT, μ)ln

(2xP̃z)2

ζ ]
× fns(x, ⃗b T, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}
M. Ebert, I. Stewart, YZ, PRD99 (2019), JHEP09 (2019).

Matching 
coefficient

Non-perturbative 
factor

Rapidity evolution/
Collins-Soper kernel

Linear power 
divergence

∝ (2η̃ + bT)/a
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Proposal to calculate the soft sector from lattice:


Proof of factorization relation:

• Leading-region of Feynman diagrams


• Analysis of lattice-friendly TMD correlators


• Proof using effective field theory (LaMET).

Quasi-TMD

26

Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020).

× fns(x, ⃗b T, μ, ζ){1 + 𝒪[ 1
(xP̃zbT)2

,
Λ2

QCD

(xP̃z)2 ]}

f̃ naive
ns (x, ⃗b T, μ, P̃z)

Sq
r (bT, μ)

= Cns(μ, xP̃z) exp[ 1
2

γq
ζ (μ, bT)ln

(2xP̃z)2

ζ ]

Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020), and the complete analysis in preparation.

A. Vladimirov and A. Schäfer, PRD 101 (2020).

Reduced soft 
factor ✓

Ebert, Schindler, Stewart and YZ, 2201.08401. 
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Desired quasi soft factor:


Quasi-TMD:

Quasi-TMD

27

S̃(bT, a, η̃, yA, yB) = SC[b⊥, a, −η̃
nA(yA)

|nA(yA) |
, − η̃

nB(yB)
|nB(yB) | ]

f̃i/h(x, ⃗b T, μ, η̃, xP̃z) = lim
a→0

Zuv(a, μ)
B̃i/h(x, ⃗b T, a, η̃, xP̃z)

S̃R(bT, a, η̃, yA, yB)

Ebert, Schindler, Stewart and YZ, 2201.08401. 

b

t

z

T

vd
vd

Figure 3: Wilson line structure of the soft function, eq. (2.8) for ⌘, ⌘̄ < 0. Figure adapted
from ref. [63].

structure, while for the gluon correlator µ, ⌫, ⇢, and � are Lorentz indices. See refs. [40, 67]
for decompositions of different choices of � into independent spin structures for quark
TMDs, and refs. [68, 69] for the decomposition for gluon TMDs. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize the
longitudinal and transverse segments of the Wilson line, which we illustrate in figure 2.

We define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
E
, (2.8)

where the trace is over color. The color averaging factor dR takes values dq = Nc and
dg = N

2
c � 1. The soft Wilson line is given by

S
R(b, ⌘v, ⌘̄v̄) = W

R


b

2
!

b

2
+ ⌘̄v̄ ! �

b

2
+ ⌘̄v̄ ! �

b

2

! �
b

2
+ ⌘v !

b

2
+ ⌘v !

b

2

�
, (2.9)

as shown in figure 3. S consists of two beam function staples glued together at the points
±b/2; the long sides of the staples run along the ⌘̄v̄ and ⌘v directions. The dependence
on two conjugate directions arises from the appearance of two TMDs in the physical cross
section in eq. (2.2). The length of the soft function path is L = 2|⌘̄v̄|+ 2|⌘v|+ 2|b|.

We define the transverse direction with respect to the plane spanned by P and v, taking
P? = v? = 0. Formally, this can be expressed as b

µ
? = g

µ⌫
? b⌫ with

g
µ⌫
? = g

µ⌫
�

1

1 + ⇣̂2


v
µ
v
⌫

v2
+

P
µ
P

⌫

P 2
+

⇣̂
2

P · v

�
P

µ
v
⌫ + v

µ
P

⌫
��

, ⇣̂ =
v · Pp
|v2|P 2

. (2.10)

We always take v and P to span the same plane as v and v̄. It follows that v? = v̄? = 0.
Our unified notation facilitates the comparison of different TMD schemes, particularly

when we examine their Lorentz invariants. In the most generic case, the beam function
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Musch-Engelhardt-Negele-Hägler-Schäfer (MHENS) scheme:

Lorentz-invariant approach: MHENS scheme

28

b = (0,b−, b⊥) δ = 0

Ratios of TMDs can be calculated without the soft function.

Can always use Lorentz invariance 
of  to boost to a frame whereP ⋅ b

−
b
2

b
2

vμ

b
2

+ ηv

−
b
2

+ ηv

b̃μ = (0,bx
T, by

T, b̃z)

BMHENS [Γ]
q/h (x, ⃗b T, P, a, η, v)

Hägler, Musch, Engelhardt, Negele, Schäfer, et al.,  
EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), 1601.05717, PRD96 (2017).
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Summary of the continuum and lattice schemes
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TMD Beam function Soft function

Collins lim
✏!0

ZR
UV lim

yB!�1

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

LR lim
�yB�1
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✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]
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✏!0
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q/h
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a!0

ZUV
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]

q/h (b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ) SR


b?, a,�⌘̃

nA(yA)

|nA(yA)|
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nA(yA)

|nA(yA)|

�

MHENS ⌦[�]

q/h(b, P, a, ⌘v, 0)

Table 1: Overview of TMD schemes, as presented in section 2. The correlator ⌦ is a
function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.

identical at large proton momenta by evaluating the quasi-TMD in a boosted frame. We
thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.

3.1.1 Beam correlators as a function of Lorentz invariants

Let us begin by examining the structure of the quasi-TMD. In dimensional regularization,
the quark quasi-beam function in eq. (2.29) reads

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) = N
�̃

Z
db̃z

2⇡
e
ib̃z(xP̃ z

)⌦[�̃]

qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
, (3.1)

where b̃
µ = (0,~bT , b̃z). To study an unpolarized Collins TMD, we must set � = �

+ in
eq. (2.19). To compare this to the quasi-TMD, we must take �̃ = �

0 or �
z, which require

normalization factors

N�z = 1 , N�0 =
P̃

z

P̃ 0
= tanh(yP̃ )

yP̃�1

= 1 . (3.2)

We can decompose the coordinate-space correlator with arbitrary b, P, v and � into Lorentz-
covariant structures as3

⌦[�µ
]

qi/h
(b, P, ✏, ⌘̃v, �) = P

µ⌦qi/h +
b
µ

�b2
⌦b
qi/h

+
v
µ
p

P 2

p
|v|2

⌦v
qi/h

+
�
µ

�b2
⌦�
qi/h

= P
µ⌦qi/h + higher twist , (3.3)

3For the full parameterization including spin-dependent terms, see e.g. ref. [29]. Note however that they
work with the correlator ⌦ where � = 0. The more general analysis carried out with our ⌦ at � 6= 0 gives
rise to additional terms.
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function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.
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thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.
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Collins / LR JMY Quasi MHENS

bµ (0, b�, b?) (0, b�, b?) (0, bxT , b
y
T , b̃

z) (0, bxT , b
y
T , b̃
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vµ (�e2yB , 1, 0?) (v�e2y
0
B , v�, 0?) (0, 0, 0,�1) (0, vx, vy, vz)

�µ (0, b�, 0?) (0, b�, 0?) (0, 0, 0, b̃z) (0, 0, 0?)

Pµ mhp
2
(eyP , e�yP , 0?)
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2
(eyP , e�yP , 0?) mh(cosh yP̃ , 0, 0, sinh yP̃ ) mh
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cosh yP ,

Px

mh
,
P y
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, sinh yP

⌘

b2 �b2T �b2T �b2T � (b̃z)2 �b2T � (b̃z)2

(⌘v)2 �2⌘2e2yB 2⌘2(v�)2e2y
0
B �⌘̃2 �⌘2~v 2

P · b mhp
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b�eyP

mhp
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z sinh yP̃ mh sinh yP b̃
z + P xbxT + P ybyT

b · (⌘v)p
|(⌘v)2b2|

� b�eyBp
2 bT

sgn(⌘)
b�ey

0
B

p
2 bT

sgn(⌘)
b̃zq

(b̃z)2 + b2T

sgn(⌘)
bxT v

x + byT v
y + b̃zvz

p
v2T + (vz)2

q
b2T + (b̃z)2

P · (⌘v)p
P 2|⌘v|2

sinh(yP �yB) sgn(⌘) cosh(yP �y0
B) sgn(⌘) sinh yP̃ sgn(⌘)

P xvx + P yvy +mhv
z sinh yPp

v2T + (vz)2
p

m2

h + P 2
x + P 2

y

�2

b2
0 0

(b̃z)2

b2T + (b̃z)2
0

b · �
b2

0 0
(b̃z)2

b2T + (b̃z)2
0

P · �
P · b 1 1 1 0

� · (⌘v)
b · (⌘v) 1 1 1 0

P 2 m2

h m2

h m2

h m2

h

Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.

where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/

p
|v2b2| ! 0. In the second line,

we neglect terms that are suppressed at large momentum P , which do not contribute at
leading power.

Combining eqs. (3.1) and (3.3) and using P̃? = 0, we have

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) =

Z
d(b̃ · P̃ )

2⇡
e
�ix(b̃·P̃ )⌦qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
. (3.4)

Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
d(b · P )

2⇡
e
�ix(b·P )⌦qi/h

⇥
b, P, ✏,�1nB(yB), b

�
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⇤
. (3.5)
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where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/
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we neglect terms that are suppressed at large momentum P , which do not contribute at
leading power.
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Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:
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• Introduction to TMDs 

• Lattice TMDs 
• LaMET and Quasi-TMDs 

• Lorentz-invariant approach (MHENS scheme) 

• Relation between lattice and continuum TMDs 

• First lattice results 
• Collins-Soper kernel for TMD evolution 

• Soft function

Outline
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Lorentz-invariant TMD variables

31

Bq/h(x, ⃗b T, ϵ, η, …) = ∫
db−

2π
e−ib−(xP+)Ω[γ+]

q/h = ∫
d(P ⋅ b)

2π
e−ix(P⋅b)Φq/h(P ⋅ b, b2, η2v2, …)

B̃Γ̃
q/h(x, ⃗b T, ϵ, η̃, …) = NΓ̃ ∫

db̃z

2π
eib̃z(xP̃z)Ω[Γ̃]

q/h = ∫
d(P̃ ⋅ b̃)

2π
e−ix(P̃⋅b̃)Φq/h(P̃ ⋅ b̃, b̃2, η̃2 ̂z2, …)

• 10 Lorentz invariant scalars; 
• Reduces to 6 when  in the MHENS scheme.δ = 0

Collins/LR/MHENS beam function

Quasi-/MHENS beam function
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Lorentz-invariant TMD variables

32
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Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/
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Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.

where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/
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|v2b2| ! 0. In the second line,
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Combining eqs. (3.1) and (3.3) and using P̃? = 0, we have
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Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
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• Collins/LR and quasi-beam functions are in the same class of 
correlators if


• So we can define the quasi-TMD with the Collins soft function

Relating LR and quasi- TMDs

35

Therefore,

ζ ≡ x2m2
he2yP−2ynζ̃ = x2m2

he2ỹP+2yB−2yn

yP̃ = yP − yB

Note that we could have alternatively demonstrated the equivalence of the quasi- and
LR/Collins Lorentz invariants by transforming b̃

z, yP , and ⌘̃ from the values in table 2 to
those in eq. (3.8), and then applying the limit yB ! �1. For example,

P̃ · b̃ = �mhb̃
z sinh yP̃ = mh

p
2eyBb� sinh(yP � ỹB)

yB!�1
�!

mh
p
2
b
�
e
yP ,

�
2

b̃2
=

1

1 + (bT /b̃z)2
=

1

1 +
⇣
bT e�yBp

2b�

⌘
2

yB!�1
�! 0 . (3.11)

By definition, the Lorentz invariants of a TMD remain unchanged by Lorentz boosts.
If we expand the quasi-TMD invariants in the boosted frame at large �yB around those of
the LR/Collins scheme, we can write a relationship between correlators:

⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)
���
quasi

= ⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)
���
boosted quasi

, (3.12)

lim
yB⌧�1

⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)
���
boosted quasi

= lim
yB⌧�1

⌦qi/h(b, P, ✏, ⌘nB(yB), b
�
nb)

���
Collins/LR

.

Making the parameterizations of b and P in both schemes explicit and shifting yP̃ ! yP�yB

(this is not a boost, but rather a change in the parametrization of the proton’s momentum)
we obtain

lim
yB⌧�1

⌦qi/h

h
b̃=(0,~bT ,�

p
2b�eyB ), P̃ =

mh

2

�
e
yP�yB , e

�(yP�yB)
, 0?

�
, ✏, ⌘̃ẑ, b̃

z
ẑ

i

= lim
yB⌧�1

⌦qi/h


b=(0, b�, b?), P =

mh

2

�
e
yP , e

�yP , 0?
�
, ✏, �

⌘̃e
�yB
p
2

nB(yB), b
�
nb

�
. (3.13)

Here, the first correlator yields the quasi-beam function at the shifted proton momentum,
while the second correlator is that of the Collins/LR scheme at finite length

⌘ = �
⌘̃e

�yB
p
2

. (3.14)

Note that ⌘ and ⌘̃ always have opposite signs, and that ⌘ < 0 corresponds to the TMD
PDF for Drell-Yan, while ⌘ > 0 corresponds to the TMD PDF for SIDIS.

Next, we supplement eq. (3.13) with a soft subtraction and UV renormalization. On
the lattice we cannot take the strict limit yB ! �1, so we must keep yB large but finite.
The Collins scheme entails taking the lightcone limit of B/

p
S prior to UV renormalization,

but here we must renormalize at finite yB. Up until this point, all statements we made hold
for both the bare Collins and LR schemes, but for the remainder of this subsection, we only
compare the renormalized quasi- and LR TMDs. Let us now write the renormalized quasi-
and LR TMDs as

f̃qi/h(x,
~bT , µ, ⇣̃, xP̃

z
, ⌘̃)

=

Z
d(P̃ ·b̃)

2⇡
e
�ix(P̃ ·b̃) lim

✏!0

Z
q
uv(µ, ✏, yn � yB)

⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)

q
S̃q(bT , ✏, ⌘̃, 2yn, 2yB)

, (3.15)
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and

f
LR

qi/h
(x,~bT , µ, ⇣, yP � yB, ⌘)

=

Z
d(P ·b)

2⇡
e
�ix(P ·b) lim

✏!0

Z
q
uv(µ, ✏, yn � yB)

⌦qi/h[b, P, ✏, ⌘nB(yB), b�nb]p
Sq(bT , ✏, ⌘, 2yn, 2yB)

. (3.16)

Here we define the five argument S
q by

S
q(bT , ✏, ⌘, 2yn, 2yB) = S̃

q(bT , ✏, ⌘̃, 2yn, 2yB) . (3.17)

The parameter yn governs the amount of soft radiation absorbed into the TMDs and gives
rise to the CS scales

⇣̃ = 2(xP̃+
e
yB�yn)2 = x

2
m

2

he
2(yP̃+yB�yn) , ⇣ = 2(xP+

e
�yn)2 = x

2
m

2

he
2(yP�yn) . (3.18)

In eq. (3.15), following standard notation for quasi-TMDs, we encode dependence on yP�yB

in P̃
z = mh sinh(yP � yB), whereas in eq. (3.16) we state this dependence explicitly. The

constraint of yP̃ = yP � yB leads to ⇣ = ⇣̃. For both TMDs, we use the finite-length soft
function in eq. (2.31), repeated here for convenience:

S̃
R(bT , ✏, ⌘̃, yA, yB) = S

R


b?, ✏,�⌘̃

nA(yA)

|nA(yA)|
,�⌘̃

nB(yB)

|nB(yB)|

�
. (3.19)

The geometric length of the soft function Wilson line is twice of that of the quasi-beam
function, so that all linear divergences from Wilson line self-energies cancel in eq. (3.15).4

Since the hadronic matrix elements in eqs. (3.15) and (3.16) are related by a boost, we
naturally also employ this soft function for the finite-length LR scheme.

Finally, we discuss the form of the UV counterterm Z
q, which is simply the ratio of the

individual counterterms Z
B
uv and Z

S
uv for the beam and soft functions,

Z
q
uv(µ, ✏, yn � yB) =

Z
B
uv(µ, ✏)p

ZS
uv(µ, ✏, 2yn � 2yB)

. (3.20)

Here, we use that in the MS scheme, the UV divergences of the quasi-beam and soft functions
are multiplicative and xP̃

z-independent, according to the auxiliary field formalism [40, 73].
Using eq. (3.13), we can now relate the renormalized finite-length quasi-TMD and LR

TMD defined in eqs. (3.15) and (3.16),

lim
yB⌧�1

f̃qi/h(x,
~bT , µ, ⌘̃, ⇣̃, xP̃

z) = lim
yB⌧�1

f
LR

qi/h

⇣
x,~bT , µ,�

⌘̃

2
e
�yB , ⇣̃, yP � yB

⌘
. (3.21)

Here, we have accounted for the change of Wilson line length in the LR scheme and used ⇣̃

as the common CS scale.
4Recall that in dimensional regularization considered here, these linear divergences appear as poles in

1/(d � 3), and hence are absent in the MS scheme where only poles in 1/(d � 4) are subtracted. Hence,
these linear divergences are set to zero for perturbative calculations in the MS scheme, but it is important
to take them into account for a definition amenable to lattice calculations.
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• Large -yB corresponds to a hard momentum scale .


• Exchange of  and  should not affect the infrared physics, so the 
difference between the orders of limits is compensated by perturbative matching !

ζLR = 4x2M2 sinh(yP − yB)

ϵ → 0 ζLR → ∞

Relating LR and Collins TMDs

36

f C
i/h(x, ⃗b T, μ, ζ) = lim

ϵ→0
ZUV lim

yB → − ∞

Bi/h

SC

Collins scheme:

LR scheme:

f C
i/h(x, ⃗b T, μ, ζ) = C−1( ζLR

μ2 ) f LR
i/h (x, ⃗b T, μ, ζ, yP − yB) + 𝒪(y−k

B eyB)

f LR
i/h (x, ⃗b T, μ, ζ, yP − yB) = lim

−yB ≫ 1
lim
ϵ→0

Z ′ 
UV

Bi/h

SC

• “LaMET”, Ji, PRL 110 (2013); SCPMA57 (2014); Ji, Liu, Liu, 
Zhang and YZ, RMP 93 (2021); 

• Collins, 2011 book, Ch. 10, on Sudakov form factors.Verified at 1-loop ✔
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Matching between quasi- and Collins TMDs

37

f̃q/h =
Bq/h

SC(bT, μ, η̃,2yn,2yB) Not directly calculable on the lattice

=
Bq/h

SC(bT, μ, η̃,0,0)

SC(bT, μ, η̃,0,0)
SC(bT, μ, η̃,2yn,2yB)

Naive quasi soft function, 
lattice calculable

• Reduced soft function:  
• Methods for calculation has been proposed and explored 

on the lattice.

Sr(bT, μ) = [gq
S (bT, μ)]2

η̃ → ∞
yB → − ∞

⟶
e− 1

2 γq
ζ (bT,μ)ln ζ̃z

ζ

gq
S(bT, μ)

ζ̃z = (2xP̃z)2 = ζLR

• Ji, Liu and Liu, NPB 955 (2020); 
• Q.-A. Zhang, et al. (LP Collaboration), PRL 125 (2020); 
• Y. Li et al., PRL 128 (2022).

lim
η̃→∞

f̃q/h(x, ⃗b T, μ, ζ, xP̃z, η̃) = C( ζ̃z

μ2 ) f C
i/h(x, ⃗b T, μ, ζ) + 𝒪(y−k

P̃ e−yP̃)

Moreover,
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Factorization formulas

38

f̃ naive
i/h

gq
S(bT, μ)

= C( ζ̃z

μ2 ) e
1
2 γq

ζ (bT,μ)ln ζ̃z
ζ f C

q/h(x, ⃗b T, μ, ζ) + 𝒪(y−k
P̃ e−yP̃)

𝒪 ( bT

η̃
,

1
(xbTP̃z)2

,
1

P̃zη̃
,

Λ2
QCD

(xP̃z)2 )

①

②

• M. Ebert, I. Stewart and YZ, PRD99 (2019), JHEP09 (2019); 
• Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020). 
• A. Vladimirov and A. Schäfer, PRD 101 (2020); 
• Ebert, Schindler, Stewart and YZ, 2201.08401. 

lim
η̃→∞

f̃q/h(x, ⃗b T, μ, η̃, ζ, xP̃z) = C( ζ̃z

μ2 ) f C
i/h(x, ⃗b T, μ, ζ) + 𝒪(y−k

P̃ e−yP̃)
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• Same proof applies for the gluon quasi TMD and for all spin-dependent 
quasi TMDs;


• No mixing between quarks of different flavors, quark and gluon 
channels, or different spin structures;


• The Pz-evolution;

Implications

39

Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).Verified at 1-loop ✔

d
d ln(2xP̃z)

ln lim
η̃≫bT

B̃[Γ̃]
q/h(x, ⃗b T, μ, η̃, xP̃z) = γq

ζ (bT, μ) + γq
C(2xP̃z, μ)

Perturbative
Lattice calculation of the Collins-Soper kernel:

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• M. Ebert, I. Stewart, YZ, PRD99 (2019).

NLL resummation in the Wilson coefficient: γq
C(2xP̃z, μ) =

d
d ln(2xP̃z)

ln Cq(xP̃z, μ)

• Ebert, Schindler, Stewart and YZ, 2201.08401. 

Both gluon and singlet quark TMDs are calculable on the lattice!

Calculation of gluon TMDs easier than anticipated!
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• Ratios of TMDs and their x-moments should be calculated in 
the x-space;


• Factorization for the MHENS TMD.

Implications

40

the Collins scheme. In particular we have

f̃
[�̃1]

qi/h
(x,~bT , µ, ⇣̃, xP̃ z)

f̃
[�̃2]

qj/h0(x,~bT , µ, ⇣̃, xP̃ z)
= lim

⌘̃!1

B̃
[�̃1]

qi/h
(x,~bT , µ, ⌘̃, xP̃ z)

B̃
[�̃2]

qj/h0(x,~bT , µ, ⌘̃, xP̃ z)
=

f
[�1]

qi/h
(x,~bT , µ, ⇣)

f
[�2]

qj/h0(x,~bT , µ, ⇣)
, (3.37)

f̃
[µ̃1⌫̃1⇢̃1�̃1]

g/h (x,~bT , µ, ⇣̃, xP̃ z)

f̃
[µ̃2⌫̃2⇢̃2�̃2]

g/h0 (x,~bT , µ, ⇣̃, xP̃ z)
= lim

⌘̃!1

B̃
[µ̃1⌫̃1⇢̃1�̃1]

g/h (x,~bT , µ, ⌘̃, xP̃ z)

B̃
[µ̃2⌫̃2⇢̃2�̃2]

g/h0 (x,~bT , µ, ⌘̃, xP̃ z)
=

f
[µ1⌫1⇢1�1]

g/h (x,~bT , µ, ⇣)

f
[µ2⌫2⇢2�2]

g/h0 (x,~bT , µ, ⇣)
.

Here qi and qj can be different quark flavors, h and h
0 can be different hadrons, and the

superscripts can be different spin structures with Dirac matrices �1
, �2 for quark (quasi-)

TMDs and Lorentz indices µk, ⌫k, ⇢k,�k with k = 1, 2 for gluon (quasi-)TMDs.
To calculate the ratios in eq. (3.37) as a function of x, one must first compute the matrix

elements for the quasi-beam functions at all bz, then take the Fourier transform. Because
UV divergences in the bare quasi-beam function matrix elements are b

z-independent, they
factor out of the Fourier integral. So, in principle we can skip renormalization and matching
to the MS scheme when calculating TMD ratios, if there are no b

z-dependent finite oper-
ator mixings on the discretized lattice. However, in the presence of such mixings, lattice
renormalization is necessary, as studied in Refs. [43, 73]. Also, in numerical analyses it can
be advantageous to consider the ⌘̃ ! 1 limit separately for the numerator and denominator
of eq. (3.37) separately. This can be accomplished by utilizing the naive quasi-soft function
or quasi-beam function at b

z = 0 to cancel the large ⌘̃-dependence.

3.2.4 Matching MHENS and continuum TMDs

We now consider the relation between the MHENS lattice TMD and Collins continuum
TMD, focusing again on the quark case. In the literature, the MHENS scheme has primarily
been used to study matrix elements evaluated at P · b = 0 [27–32]. In this case, the equal-
time-restricted Wilson line path in the MHENS beam function is the same as that of the
quasi-beam function. This is easily seen by comparing the integral over x of the MHENS
beam function in eq. (2.39), with the integral over x of the quasi-beam function in eq. (2.29),
and noting that both give the same correlator ⌦[�]

q/h(
~bT , P̃ , a, ⌘̃ẑ, 0) = �̃[�]

unsubtr.(
~bT , P̃ , a, ⌘̃ẑ)

times a factor of N�/P
z. For the integral over x we define

Z
dx f̃

[�]

qi/h
(x,~bT , µ, ⇣̃, xP̃

z
, ⌘̃) = f̃

[�]

qi/h
(bz = 0,~bT , µ, P̃

z
, yn � yB, ⌘̃) (3.38)

= f
[�]MHENS

qi/h
(bz = 0,~bT , µ, P̃

z
, yn � yB, ⌘̃) .

The first quasi-TMD here has x-dependence in three of its arguments (two written explicitly
and the other in ⇣̃), so it is convenient to write the x-independent result as a new function,
whose distinction is tagged by the first b

z = 0 argument. We adopt the same notation
for the MHENS TMD, as shown. Given this correspondence, we can simply adopt the
same terms used in defining the quasi-TMD in eq. (2.27) to define a renormalized and soft

– 28 –

Additional challenges beyond tree-level 
renormalization/matching: 

• bz-dependent renormalization


• bz-dependent soft function?

∝ (2 |ηv | + b̃2
z + b2

T)/aLinear:

Cusp: ∝ [3 −
2b̃z

bT
tan−1 bT

b̃z ] ln(a)

−
b
2

b
2

vμ

b
2

+ ηv

−
b
2

+ ηv

• Ratios of the x-moments of TMDs can be calculated with MHENS beam 
functions at  with tree-level matching; 

• With proper lattice renormalization and soft function subtraction, the 
MHENS scheme should be equivalent to the LR scheme.

b̃z = 0
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• Introduction to TMDs 

• Lattice TMDs 
• LaMET and Quasi-TMDs 

• Lorentz-invariant approach (MHENS scheme) 

• Relation between lattice and continuum TMDs 

• First lattice results 
• Collins-Soper kernel for TMD evolution 

• Soft function

Outline
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Collins-Soper kernel

42

12

(a) Comparison with the SV19 [4] and Pavia19 [5]
phenomenological parameterizations.
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(b) Comparison with quenched results of Ref. [19] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Di↵erent sets of points
with the same color show di↵erent sets of results from the

same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all
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(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all

Results by different groups with 
different systematics. Comparison with phenomenology

(Green points), P. Shanahan, M. Wagman and YZ, PRD 104 (2021).

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 137 
Pavia19: A. Bacchetta et al., JHEP 07 (2020) 117

• SWZ20, P. Shanahan, M. Wagman and YZ, PRD 102 (2020) ; 
• Regensburg/NMSU21, Schlemmer, Vladimirov, 

Zimmerman, Engelhardt, Schäfer, JHEP 08 (2021); 
• LPC20, Q.-A. Zhang, et al. (LPC), PRL 125 (2020); 
• ETMC/PKU21, Y. Li et al., PRL 128 (2022).
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Reduced soft function
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Q.-A. Zhang, et al. (LPC), PRL 125 (2020).

4

TMDWF,

C2(b?, P
z; pz, `, t) =

1

L3
p
ZE(2`, b?)

X

x

Trei
~P ·~x

⇥ hS
†
w(~x+~b, t, 0;�~p)W(~b, `)�5��Sw(~x, t, 0;P

z
� ~p)i

=
Aw(pz)Ap

2E
e
�Et

�`(0, b?, P
z
, `)(1 + c0e

��Et), (15)

where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.

5

Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],

S
MS
(b⊥, µ) = 1 − ↵sCF

⇡
ln

µ2b2⊥
4e−2�E

+O(↵2

s), (17)

where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as

K(b⊥, µ) = lim
l→∞

1

ln(P z
1
�P z

2
)
ln �

�(b⊥, l, P z
1
)�E1

�(b⊥, l, P z
2
)�E2

�

=
1

ln(P z
1
�P z

2
)
ln

������������

Cwf
��
(b⊥, P z

1
)

Cwf
��
(b⊥, P z

2
)

Cwf
��
(0, P z

2
)

Cwf
��
(0, P z

1
)

������������

. (18)

Figure 4. The lattice results for the Collins-Soper kernel
K(b⊥, µ) from various calculations, described by the color of
yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.

In Fig. 4, the lattice results of K(b⊥, µ) from this work

Y. Li et al., PRL 128 (2022).

With the quasi beam function, soft function, and Collins-Soper kernel 
calculable, we can obtain the full TMD from lattice QCD!
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• New large-rapidity (LR) scheme;


• The quasi TMD is equivalent to the LR scheme through Lorentz 
invariance;


• The LR and Collins schemes differ by the order of UV 
renormalization and light-cone limits, so we can perturbatively 
match them;


• We derive the factorization formula for both quark and gluon 
quasi TMDs using such relations;


• There is no mixing between quarks of different flavors, quark 
and gluon channels, or different spin structures.

Conclusion

44



YONG ZHAO, 02/21/2022

Collinear factorization:

Drell-Yan production of lepton pair

45

dσDY

dQ2dY
= ∑

i, j
∫

1

xa

dξa ∫
1

xb

dξb fi/hA
(ξa) fi/hA

(ξb)
d ̂σij(ξa, ξb)

dQ2dY [1 + 𝒪(
Λ2

QCD

Q2 )]

s = (PA + PB)2

qμ = lμ + l̄μ , Q2 = q2 , Y =
1
2

ln
na ⋅ q
nb ⋅ q

qμxbPB

xaPA

⎰

⎰

na = (1,0,0,1)/ 2 , nb = (1,0,0, − 1)/ 2

xa = Qe+Y s, xb = Qe−Y s
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Ji-Ma-Yuan (JMY) scheme

46

−
b
2

b
2

vμ

∞ v

BJMY
q/h (x, ⃗b T, μ, ζv) = ∫

db−

2π
e−ib−(xP+)Φ[γ+]

q/h [b, P, μ, −∞v, b−nb]

ṽμ = (ṽ+, ṽ−,0⊥) , ṽ+ ≫ ṽ− > 0

ζ2
v =

(2P ⋅ v)2

v2
= 2(P+)2 v−

v+

bμ = (0,b−, b⊥) δμ = (0,b−,0⊥)

vμ = (v+, v−,0⊥) , v− ≫ v+ > 0

SR
JMY(bT, μ, yA, yB) = SR[b⊥, μ, −∞v, − ∞ṽ]

f JMY
i/h (x, ⃗b T, μ, ζv, ρ) =

BJMY
i/h (x, bT, μ, ζv)

SR
JMY(bT, μ, ρ)

TMDPDF:

|η | → ∞

ρ2 =
v−ṽ+

v+ṽ−

Analytically continuable from the LR scheme (yP-yB to ρ).


