Factorization connecting continuum and lattice TMDs

Jefferson Lab Theory Seminar

YONG ZHAO FEB 21, 2022

In collaboration with M. Ebert, S. Schindler and I. Stewart, based on arXiv: 2201.08401.

3D Tomography of the Proton (Hadrons)

Outline

- Introduction to TMDs
- Lattice TMDs
 - LaMET and Quasi-TMDs
 - Lorentz-invariant approach (MHENS scheme)
- Relation between lattice and continuum TMDs
- First lattice results
 - Collins-Soper kernel for TMD evolution
 - Soft function

Outline

- Introduction to TMDs
- Lattice TMDs
 - LaMET and Quasi-TMDs
 - Lorentz-invariant approach (MHENS scheme)
- Relation between lattice and continuum TMDs
- First lattice results
 - Collins-Soper kernel for TMD evolution
 - Soft function

High-energy proton structure and the parton model

The inner proton structure has been probed through high-energy scattering.

Richard P. Feynman

Feynman's parton model (1969):

- When the proton travels at almost the speed of light, quarks and gluons are "frozen" in the transverse plane due to Lorentz contraction;
- During a hard collision, the struck quark/gluon (parton) appears to the probe that it does not interact with its surroundings.

Tomography in the 3D momentum space

Collinear parton distribution function (PDF) $f_i(x)$

Transverse-momentum dependent parton distribution (TMD) $f_i(x, \vec{k}_{\perp})$

TMD in the Fourier conjugate b_T -space:

$$f_i(x, \overrightarrow{b}_T) = \int d^2k_T \ e^{i \overrightarrow{k}_T \cdot \overrightarrow{b}_T} f_i(x, \overrightarrow{k}_T)$$

Tomography in the 3D momentum space

Unpolarized quark TMD

I. Scimemi and A. Vladimirov, JHEP 06 (2020).

Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

$TMP_{q/P}(x)$ from experiments $TMP_{q/P}(x, x_T)$

TMD processes:

HERMES, COMPASS, JLab, EIC, ...

Fermilab, RHIC, LHC, ...

Babar, Belle, BESIII, ... Χ

Differential cross section $\frac{d\sigma_{\rm DY}}{dQdYd^2q_T}$:

- Q and Y uniquely determine x_a and x_b of initial state partons;
- q_T is contributed from the transverse momenta of partons and radiated gluons.

Differential cross section $\frac{d\sigma_{\rm DY}}{dQdYd^2q_T}$:

- Q and Y uniquely determine x_a and x_b of initial state partons;
- q_T is contributed from the transverse momenta of partons and radiated gluons.

TMD factorization for $q_T = |q_{\perp}| \ll Q$:

From J. Qiu's TMD School 2022 Lectures.

TMD factorization for $q_T = |q_{\perp}| \ll Q$:

(Schematic) factorization formula:

TMD Handbook, by TMD Collaboration

TMD factorization for $q_T = |q_{\perp}| \ll Q$:

Separation of soft (p_s) and collinear (p_{n_a}, p_{n_b}) modes:

$$p_{n_a} \sim Q(\lambda^2, 1, \lambda), \ p_{n_b} \sim Q(1, \lambda^2, \lambda), \ p_s \sim Q(\lambda, \lambda, \lambda), \ \lambda \ll 1$$
$$p_{n_a}^2 \sim p_{n_b}^2 \sim p_s^2 \sim q_T^2, \qquad \text{rapidity}: \quad y = \frac{1}{2} \ln \frac{p^-}{p^+}$$

(Schematic) factorization formula:

 $\frac{d\sigma_{\rm DY}}{dQdYd^2q_T} = H \otimes B \otimes B \otimes S$ Hard factor (Collinear) beam functions Soft function

TMD Handbook, by TMD Collaboration

TMD factorization for $q_T = |q_{\perp}| \ll Q$:

Separation of soft (p_s) and collinear (p_{n_a}, p_{n_b}) modes:

$$p_{n_a} \sim Q(\lambda^2, 1, \lambda), \ p_{n_b} \sim Q(1, \lambda^2, \lambda), \ p_s \sim Q(\lambda, \lambda, \lambda), \ \lambda \ll 1$$
$$p_{n_a}^2 \sim p_{n_b}^2 \sim p_s^2 \sim q_T^2, \qquad \text{rapidity}: \quad y = \frac{1}{2} \ln \frac{p^-}{p^+}$$

(Schematic) factorization formula:

11

Beam function:

Hadronic matrix element

• Soft function :

Vacuum matrix element

Ebert, Stewart and YZ, JHEP 09 (2019)

Beam function:

• Soft function :

Ebert, Stewart and YZ, JHEP 09 (2019)

Many different schemes for regulating rapidity divergences:

Wilson lines on the light-cone (SCET):

- Becher and Neubert, EPJC71 (2011);
- Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB726 (2013);
- Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012);
- Li, Neil and Zhu, NPB 960 (2020);
- Ebert, Moult, Stewart, Tackman and Vita, JHEP 04 (2019).

Wilson lines off the light-cone:

- "Collins scheme", Collins, Soper and Sterman, NPB250 (1985); Collins, 2011 book;
- "JMY scheme", Ji, Ma and Yuan, PRD71 (2005).

For reviews see also

- Ebert, Stewart and YZ, JHEP 09 (2019);
- TMD Handbook, by TMD collaboration.

Scheme-independent TMD factorization:

$$\frac{d\sigma_{\text{DY}}}{dQdYd^2q_T} = \sigma_0 \sum_{i,j} H_{ij}(Q,\mu) \int d^2b_T e^{i\vec{b}_T \cdot \vec{q}_T} f_i^{\text{TMD}}(x_a,\vec{b}_T,\mu,\zeta_a) f_j^{\text{TMD}}(x_b,\vec{b}_T,\mu,\zeta_b) \left[1 + \mathcal{O}\left(\frac{q_T^2}{Q^2},\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)\right] \zeta_a \zeta_b = Q^4$$

Many different schemes for regulating rapidity divergences:

Wilson lines on the light-cone (SCET):

- Becher and Neubert, EPJC71 (2011);
- Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB726 (2013);
- Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012);
- Li, Neil and Zhu, NPB 960 (2020);
- Ebert, Moult, Stewart, Tackman and Vita, JHEP 04 (2019).

Wilson lines off the light-cone:

- "Collins scheme", Collins, Soper and Sterman, NPB250 (1985); Collins, 2011 book;
- "JMY scheme", Ji, Ma and Yuan, PRD71 (2005).

For reviews see also

- Ebert, Stewart and YZ, JHEP 09 (2019);
- TMD Handbook, by TMD collaboration.

Scheme-independent TMD factorization:

$$\frac{d\sigma_{\text{DY}}}{dQdYd^2q_T} = \sigma_0 \sum_{i,j} H_{ij}(Q,\mu) \int d^2b_T e^{i\vec{b}_T \cdot \vec{q}_T} f_i^{\text{TMD}}(x_a,\vec{b}_T,\mu,\zeta_a) f_j^{\text{TMD}}(x_b,\vec{b}_T,\mu,\zeta_b) \Big[1 + \mathcal{O}\Big(\frac{q_T^2}{Q^2},\frac{\Lambda_{\text{QCD}}^2}{Q^2}\Big) \Big]$$
$$\zeta_a \zeta_b = Q^4$$

- For $b_T \ll \Lambda_{\text{OCD}}^{-1}$, can be perturbatively matched onto collinear PDFs;
- For $b_T \sim \Lambda_{\text{OCD}}^{-1}$, becomes intrinsically non-perturbative, which motivates first-principles calculations.

Overview of the continuum and lattice schemes

Ebert, Schindler, Stewart and YZ, 2201.08401.

Continuum schemes

General correlator for the beam function

$$\Omega_{q_i/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \delta) = \left\langle h(P) \middle| \bar{q_i} \left(\frac{b}{2}\right) \frac{\Gamma}{2} W_{\Box}^F(b, \eta v, \delta) q_i \left(-\frac{b}{2}\right) \middle| h(P) \right\rangle$$

Cusp angles:

$$\cosh \gamma_{\pm} = \frac{(\eta v \pm \delta/2) \cdot (b - \delta)}{|\eta v \pm \delta/2| |b - \delta|}$$

General correlator for the soft function

$$S^{R}(b,\epsilon,\eta v,\bar{\eta}\bar{v}) = \frac{1}{d_{R}} \Big\langle 0 \Big| \mathrm{Tr} \Big[S^{R}_{\geqslant}(b,\eta v,\bar{\eta}\bar{v}) \Big] \Big| 0 \Big\rangle$$

Collins scheme

$$b = (0, b^-, b_\perp) \qquad \delta = b^- n_b$$

$$B^C \qquad \qquad b_\perp \qquad b^- \\ n_B(y_B) \qquad \qquad b$$

$$\delta^{\mu} = (0, b^{-}, 0_{\perp})$$
$$v^{\mu} = n_{B}^{\mu}(y_{B}) \equiv n_{b}^{\mu} - e^{2y_{B}}n_{a}^{\mu} = (-e^{2y_{B}}, 1, 0_{\perp})$$

$$B_{q/h}^{C}(x, \overrightarrow{b}_{T}, \epsilon, y_{P} - y_{B}) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \times \Omega_{q/h}^{[\gamma^{+}]} \left[b, P, \epsilon, -\infty n_{B}, b^{-} n_{b} \right]$$

$$f_{i/h}^{C}(x, \overrightarrow{b}_{T}, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{UV}(\epsilon, \mu, \zeta)$$
$$\times \lim_{y_{B} \to -\infty} \frac{B_{i/h}^{C}(x, \overrightarrow{b}_{T}, \epsilon, y_{P} - y_{B})}{\sqrt{S_{C}(b_{T}, \epsilon, 2(y_{n} - y_{B}))}}$$

Rapidity divergences $\propto e^{-\gamma_{\zeta}^{q}(b_{T},\epsilon)(y_{P}-y_{B})}, e^{-\gamma_{\zeta}^{q}(b_{T},\epsilon)(2y_{n}-2y_{B})}$

$$\zeta = 2(xP^+e^{-y_n})^2 = x^2m_h^2e^{2(y_P-y_n)}$$

Collins scheme

$$p^{+} \qquad y_{n_{a}} \qquad y_{n} \qquad 2y_{B}, 1, 0_{\perp})$$

$$q_{T} \qquad 2y_{B}, 1, 0_{\perp})$$

$$q_{T} \qquad y_{n_{b}} \qquad y_{n$$

$$\zeta = 2(xP^+e^{-y_n})^2 = x^2m_h^2e^{2(y_P-y_n)}$$

Large Rapidity (LR) scheme

Ebert, Schindler, Stewart and YZ, 2201.08401.

Reversed order of limits:

$$f_{i/h}^{LR}(x, \overrightarrow{b}_T, \mu, \zeta, y_P - y_B)$$

$$= \lim_{-y_B \gg 1} \lim_{\epsilon \to 0} \frac{Z_{UV}^B(\epsilon, \mu)}{\sqrt{Z_{UV}^S(\epsilon, \mu, 2y_n - 2y_B)}}$$

$$\times \frac{B_{i/h}^C(x, \overrightarrow{b}_T, \epsilon, y_P - y_B)}{\sqrt{S_C(b_T, \epsilon, 2(y_n - y_B))}}$$

Outline

- Introduction to TMDs
- Lattice TMDs
 - LaMET and Quasi-TMDs
 - Lorentz-invariant approach (MHENS scheme)
- Relation between lattice and continuum TMDs
- First lattice results
 - Collins-Soper kernel for TMD evolution
 - Soft function

Lattice QCD

Lattice gauge theory: a systematically improvable approach to solve non-perturbative QCD.

Imaginary time: $t \to i\tau$ $O(i\tau) \xrightarrow{?} O(t)$

Simulating real-time dynamics has been extremely difficult due to the issue of analytical continuation.

X. Ji, PRL 110 (2013)

Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

PDF f(x): Cannot be calculated on the lattice

X. Ji, PRL 110 (2013)

PDF f(x): Cannot be calculated on the lattice

Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

Related by Lorentz boost

X. Ji, PRL 110 (2013)

 $t = 0, \ z \neq 0$

 $\overline{\psi}$ $\overline{\psi}$ $\overline{\psi}$ \overline{z} $\overline{z/2}$ $\overline{z/2}$

 $z + ct = 0, \ z - ct \neq 0$

 $\overline{\psi}$ ψ z

 $\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$

Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

X. Ji, PRL 110 (2013)

 $t = 0, \ z \neq 0$

Related by Lorentz boost

z/2

PDF f(x): Cannot be calculated on the lattice

 $\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$

Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

- Quasi-PDF: $P^z \ll \Lambda$; Λ : the ultraviolet lattice cutoff, $\sim 1/a$
- PDF: $P^z = \infty$, implying $P^z \gg \Lambda$.
 - The limits $P^z \ll \Lambda$ and $P^z \gg \Lambda$ are not usually exchangeable;
 - For $P^z \gg \Lambda_{\rm QCD}$, the infrared (nonperturbative) physics is not affected, which allows for an effective field theory matching.

$$\tilde{f}(x, P^{z}, \Lambda) = \underbrace{C\left(x, P^{z}/\mu, \Lambda/P^{z}\right)}_{P_{z}^{z}} \otimes f(x, \mu) + O\left(\frac{\Lambda_{\text{QCD}}^{2}}{P_{z}^{2}}\right)$$

Perturbative matching

Power corrections

- X. Ji, PRL 110 (2013); SCPMA57 (2014).
- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
- X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

LaMET calculation of the collinear PDFs

A state-of-the-art calculation of the pion valence quark PDF with fine lattices, large momentum and NNLO matching:

Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, 2112.02208.

Quasi-TMD

 $\tilde{b}^{\mu} = (0, b_T^x, b_T^y, \tilde{b}^z)$ $\delta = \tilde{b}^z \hat{z} = (0, 0, 0, \tilde{b}^z)$

Quasi-beam function:

$$\tilde{B}_{i/h}(x, \overrightarrow{b}_T, a, \tilde{\eta}, x\tilde{P}^z), \quad \tilde{P}^z \gg m_h$$

Quasi-soft function?

 b_{\perp}

 $\frac{\tilde{b}^z}{2}$

 \tilde{b}^z

 $\tilde{\eta} \hat{z}$

 $\tilde{\eta} \hat{z}$

• M. Ebert, I. Stewart, YZ, JHEP09 (2019).

 \hat{z}

- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- M. Ebert, I. Stewart, YZ, PRD99 (2019), JHEP09 (2019).

Naive Quasi-TMD:

Linear power divergence

$$\tilde{f}_{i/h}(x,\vec{b}_T,\mu,x\tilde{P}^z) = \lim_{\substack{a\to 0\\\tilde{\eta}\to\infty}} Z_{uv}(a,\mu) \frac{\tilde{B}_{i/h}(x,\vec{b}_T,a,\tilde{\eta},x\tilde{P}^z)}{\sqrt{\tilde{S}^{naive}(b_T,a,\tilde{\eta})}}$$

 $\propto (2\tilde{\eta}+b_T)/a$

Conjectured factorization relation to the physical TMD:

$$\begin{split} & \underset{\text{fnsive}}{\text{Non-perturbative}} \quad \underset{\text{Collins-Soper kernel}}{\text{Rapidity evolution/}} \\ & \tilde{f}_{\text{ns}}^{\text{naive}}(x, \overrightarrow{b}_{T}, \mu, x \widetilde{P}^{z}) = C_{\text{ns}}(x \widetilde{P}^{z}, \mu) \; g_{S}^{q}(b_{T}, \mu) \; \exp\left[\frac{1}{2}\gamma_{\zeta}^{q}(b_{T}, \mu) \ln \frac{(2x \widetilde{P}^{z})^{2}}{\zeta}\right] \\ & \underset{\text{Matching}}{\text{coefficient}} \\ & \times f_{\text{ns}}(x, \overrightarrow{b}_{T}, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x \widetilde{P}^{z} b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{(x \widetilde{P}^{z})^{2}}\right]\right\} \end{split}$$

M. Ebert, I. Stewart, YZ, PRD99 (2019), JHEP09 (2019).

Quasi-TMD

Proposal to calculate the soft sector from lattice:

$$\frac{\tilde{f}_{ns}^{naive}(x,\vec{b}_{T},\mu,\tilde{P}^{z})}{\sqrt{S_{r}^{q}(b_{T},\mu)}} = C_{ns}(\mu,x\tilde{P}^{z}) \exp\left[\frac{1}{2}\gamma_{\zeta}^{q}(\mu,b_{T})\ln\frac{(2x\tilde{P}^{z})^{2}}{\zeta}\right]$$
Reduced soft factor \checkmark $\times f_{ns}(x,\vec{b}_{T},\mu,\zeta)\left\{1+\mathcal{O}\left[\frac{1}{(x\tilde{P}^{z}b_{T})^{2}},\frac{\Lambda_{QCD}^{2}}{(x\tilde{P}^{z})^{2}}\right]\right\}$

Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).

Proof of factorization relation:

Leading-region of Feynman diagrams

Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020), and the complete analysis in preparation.

Analysis of lattice-friendly TMD correlators

A. Vladimirov and A. Schäfer, PRD 101 (2020).

• Proof using effective field theory (LaMET).

Ebert, Schindler, Stewart and YZ, 2201.08401.

Desired quasi soft factor:

$$\tilde{S}(b_T, a, \tilde{\eta}, y_A, y_B) = S^C \left[b_\perp, a, -\tilde{\eta} \frac{n_A(y_A)}{|n_A(y_A)|}, -\tilde{\eta} \frac{n_B(y_B)}{|n_B(y_B)|} \right]$$

Ebert, Schindler, Stewart and YZ, 2201.08401.

Quasi-TMD:

$$\tilde{f}_{i/h}(x,\vec{b}_T,\mu,\tilde{\eta},x\tilde{P}^z) = \lim_{a\to 0} Z_{\rm uv}(a,\mu) \frac{\tilde{B}_{i/h}(x,\vec{b}_T,a,\tilde{\eta},x\tilde{P}^z)}{\sqrt{\tilde{S}^R(b_T,a,\tilde{\eta},y_A,y_B)}}$$

Lorentz-invariant approach: MHENS scheme

Musch-Engelhardt-Negele-Hägler-Schäfer (MHENS) scheme:

Hägler, Musch, Engelhardt, Negele, Schäfer, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), 1601.05717, PRD96 (2017).

Ratios of TMDs can be calculated without the soft function.

Summary of the continuum and lattice schemes

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z^R_{\rm UV} \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b\right]$	$S^{R}[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B})]$
m LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\rm UV}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b\right]$	$S^{R}[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B})]$
Quasi	$\lim_{a \to 0} Z_{\rm UV} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	$\Omega_{q/h}^{[\gamma^{0,z}]}(\tilde{b},\tilde{P},a,\tilde{\eta}\hat{z},\tilde{b}^{z}\hat{z})$	$S^{R}\left[b_{\perp}, a, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$
MHENS		$\Omega^{[\Gamma]}_{q/h}(b,P,a,\eta v,0)$	

	$\mathbf{Collins}\ /\ \mathbf{LR}$	Quasi	MHENS
b^{μ}	$(0,b^-,b_\perp)$	$(0, b_T^x, b_T^y, \tilde{b}^z)$	$(0, b_T^x, b_T^y, ilde{b}^z)$
v^{μ}	$(-e^{2y_B}, 1, 0_\perp)$	(0, 0, 0, -1)	$(0, v^x, v^y, v^z)$
δ^{μ}	$(0,b^-,0_\perp)$	$(0,0,0, ilde{b}^z)$	$(0,0,0_{\perp})$
P^{μ}	$\frac{m_h}{\sqrt{2}}(e^{y_P}, e^{-y_P}, 0_\perp)$	$m_h(\cosh y_{\tilde{P}},0,0,\sinh y_{\tilde{P}})$	$m_h\left(\cosh y_P, \frac{P^x}{m_h}, \frac{P^y}{m_h}, \sinh y_P\right)$

Outline

- Introduction to TMDs
- Lattice TMDs
 - LaMET and Quasi-TMDs
 - Lorentz-invariant approach (MHENS scheme)
- Relation between lattice and continuum TMDs
- First lattice results
 - Collins-Soper kernel for TMD evolution
 - Soft function

Collins/LR/MHENS beam function

$$B_{q/h}(x,\vec{b}_{T},\epsilon,\eta,...) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \Omega_{q/h}^{[\gamma^{+}]} = \int \frac{d(P \cdot b)}{2\pi} e^{-ix(P \cdot b)} \Phi_{q/h}(P \cdot b, b^{2}, \eta^{2}v^{2},...)$$

Quasi-/MHENS beam function

$$\tilde{B}_{q/h}^{\tilde{\Gamma}}(x,\overrightarrow{b}_{T},\epsilon,\tilde{\eta},\ldots) = N_{\tilde{\Gamma}} \int \frac{d\tilde{b}^{z}}{2\pi} e^{i\tilde{b}^{z}(x\tilde{P}^{z})} \Omega_{q/h}^{[\tilde{\Gamma}]} = \int \frac{d(\tilde{P}\cdot\tilde{b})}{2\pi} e^{-ix(\tilde{P}\cdot\tilde{b})} \Phi_{q/h}(\tilde{P}\cdot\tilde{b},\tilde{b}^{2},\tilde{\eta}^{2}\hat{z}^{2},\ldots)$$

• 10 Lorentz invariant scalars;

• Reduces to 6 when $\delta=0$ in the MHENS scheme.

$$\begin{split} & \begin{array}{|c|c|c|c|c|} \hline Sinh(y_P - y_B) = Sinh(y_{\bar{P}}) \\ \Rightarrow y_{\bar{P}} = y_P - y_B \\ y_B \rightarrow -\infty \Rightarrow y_{\bar{P}} \rightarrow -\infty \end{split} \end{split} \begin{array}{|c|c|c|} \hline Collins / LR & Quasi & MHENS \\ \hline b^2 & -b_T^2 & -b_T^2 - (\bar{b}^z)^2 & -b_T^2 - (\bar{b}^z)^2 \\ \hline (\eta v)^2 & -2\eta^2 e^{2y_{II}} & -\tilde{\eta}^2 & -\eta^2 \bar{v}^2 \\ \hline (\eta v)^2 & -2\eta^2 e^{2y_{II}} & -\tilde{\eta}^2 & -\eta^2 \bar{v}^2 \\ \hline P \cdot b & \frac{m_h}{\sqrt{2}} b - e^{y_{II}} & -m_h \bar{b}^z \sinh y_{\bar{P}} & m_h \sinh y_I \bar{b}^z + P^a b_T^x + P^y b_{II}^y \\ \hline b \cdot (\eta v) & -b - e^{y_{II}} sgn(\eta) & \frac{\bar{b}^z}{\sqrt{(\bar{b}^z)^2 + b_T^2}} sgn(\eta) & \frac{b_T^x v^x + b_Y^y v^y + \bar{b}^z v^z}{\sqrt{v_T^2 + (v^z)^2} \sqrt{b_T^2 + (\bar{b}^z)^2}} \\ \hline \frac{P \cdot (\eta v)}{\sqrt{1}(\eta v)^2 b^2} & -\frac{b - e^{y_{II}}}{\sqrt{2} b_T} sgn(\eta) & Sinh y_{\bar{P}} sgn(\eta) & \frac{P^z v^x + P^y v^y + m_h v^z \sinh y_P}{\sqrt{v_T^2 + (v^z)^2} \sqrt{m_h^2 + P_x^2 + P_y^2}} \\ \hline \frac{B^2}{b^2} & 0 & \frac{(\bar{b}^z)^2}{b_T^2 + (\bar{b}^z)^2} & 0 \\ \hline \frac{b \cdot \delta}{b^2} & 0 & \frac{(\bar{b}^z)^2}{b_T^2 + (\bar{b}^z)^2} & 0 \\ \hline \frac{P \cdot \delta}{P \cdot b} & 1 & 1 & 0 \\ \hline \frac{\delta \cdot (\eta v)}{b \cdot (\eta v)} & 1 & 1 & 0 \\ \hline P^2 & m_h^2 & m_h^2 & m_h^2 \\ \hline \end{array}$$

$$y_P, b^- \text{ finite}$$

 $y_{\tilde{P}} \to -\infty \Rightarrow \tilde{b}^z \to 0$

	$\mathbf{Collins}\ /\ \mathbf{LR}$	Quasi	MHENS
b^2	$-b_T^2$	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2 - (\tilde{b}^z)^2$
$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde\eta^2$	$-\eta^2 ec v^2$
$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$
$\frac{b \cdot (\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$-\frac{b^- e^{y_B}}{\sqrt{2} b_T} \operatorname{sgn}(\eta)$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}} \operatorname{sgn}(\eta)$	$\frac{b_T^x v^x + b_T^y v^y + \tilde{b}^z v^z}{\sqrt{v_T^2 + (v^z)^2} \sqrt{b_T^2 + (\tilde{b}^z)^2}}$
$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh(y_P - y_B) \operatorname{sgn}(\eta)$	$\sinh y_{\tilde{P}}\mathrm{sgn}(\eta)$	$\frac{P^{x}v^{x} + P^{y}v^{y} + m_{h}v^{z}\sinh y_{P}}{\sqrt{v_{T}^{2} + (v^{z})^{2}}\sqrt{m_{h}^{2} + P_{x}^{2} + P_{y}^{2}}}$
$\frac{\delta^2}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{b\cdot\delta}{b^2}$	0	$\frac{(\tilde{b}^{z})^{2}}{b_{T}^{2} + (\tilde{b}^{z})^{2}}$	0
$\frac{P\cdot\delta}{P\cdot b}$	1	1	0
$\frac{\overline{\delta\cdot(\eta v)}}{\overline{b\cdot(\eta v)}}$	1	1	0
P^2	m_h^2	m_h^2	m_h^2

	$\mathbf{Collins}\ /\ \mathbf{LR}$	Quasi	MHENS
b^2	$-b_T^2$	$-b_T^2 - (ilde{b}^z)^2$	$-b_T^2 - (ilde{b}^z)^2$
$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde\eta^2$	$-\eta^2 ec{v}^2$
$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$
$\frac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$-\frac{b^- e^{y_B}}{\sqrt{2} b_T} \operatorname{sgn}(\eta)$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}} \operatorname{sgn}(\eta)$	$\frac{b_T^x v^x + b_T^y v^y + \tilde{b}^z v^z}{\sqrt{v_T^2 + (v^z)^2} \sqrt{b_T^2 + (\tilde{b}^z)^2}}$
$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh(y_P - y_B)\operatorname{sgn}(\eta)$	$\sinh y_{ ilde{P}} \operatorname{sgn}(\eta)$	$\frac{P^{x}v^{x} + P^{y}v^{y} + m_{h}v^{z}\sinh y_{P}}{\sqrt{v_{T}^{2} + (v^{z})^{2}}\sqrt{m_{h}^{2} + P_{x}^{2} + P_{y}^{2}}}$
$\frac{\delta^2}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{b \cdot \delta}{b^2}$	0	$\frac{(\tilde{b}^{z})^{2}}{b_{T}^{2} + (\tilde{b}^{z})^{2}}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1	0
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1	0
P^2	m_h^2	m_h^2	m_h^2

Relating LR and quasi- TMDs

 Collins/LR and quasi-beam functions are in the same class of correlators if

$$y_{\tilde{P}} = y_P - y_B$$

So we can define the quasi-TMD with the Collins soft function

$$\begin{split} \tilde{f}_{q_i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z, \tilde{\eta}) \\ &= \int \frac{\mathrm{d}(\tilde{P} \cdot \tilde{b})}{2\pi} e^{-\mathrm{i}x(\tilde{P} \cdot \tilde{b})} \lim_{\epsilon \to 0} Z^q_{\mathrm{uv}}(\mu, \epsilon, y_n - y_B) \frac{\Omega_{q_i/h}(\tilde{b}, \tilde{P}, \epsilon, \tilde{\eta}\hat{z}, \tilde{b}^z \hat{z})}{\sqrt{\tilde{S}^q(b_T, \epsilon, \tilde{\eta}, 2y_n, 2y_B)}} \\ \tilde{\xi} &= x^2 m_h^2 e^{2\tilde{y}_P + 2y_B - 2y_n} \qquad \zeta \equiv x^2 m_h^2 e^{2y_P - 2y_n} \end{split}$$

Therefore,

$$\lim_{y_B \ll -1} \tilde{f}_{q_i/h}(x, \vec{b}_T, \mu, \tilde{\eta}, \tilde{\zeta}, x\tilde{P}^z) = \lim_{y_B \ll -1} f_{q_i/h}^{\mathrm{LR}}\left(x, \vec{b}_T, \mu, -\frac{\tilde{\eta}}{2}e^{-y_B}, \tilde{\zeta}, y_P - y_B\right)$$

Relating LR and Collins TMDs

Collins scheme:

$$f_{i/h}^C(x, \overrightarrow{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{y_B \to -\infty} \frac{B_{i/h}}{\sqrt{S_C}}$$

LR scheme:
$$f_{i/h}^{\text{LR}}(x, \overrightarrow{b}_T, \mu, \zeta, y_P - y_B) = \lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^{'} \frac{B_{i/h}}{\sqrt{S_C}}$$

- Large $-y_B$ corresponds to a hard momentum scale $\zeta_{LR} = 4x^2M^2\sinh(y_P y_B)$.
- Exchange of $\epsilon \to 0$ and $\zeta_{LR} \to \infty$ should not affect the infrared physics, so the difference between the orders of limits is compensated by perturbative matching !

$$f_{i/h}^C(x, \overrightarrow{b}_T, \mu, \zeta) = C^{-1} \left(\frac{\zeta_{\text{LR}}}{\mu^2}\right) f_{i/h}^{\text{LR}}(x, \overrightarrow{b}_T, \mu, \zeta, y_P - y_B) + \mathcal{O}(y_B^{-k} e^{y_B})$$

Verified at 1-loop 🗸

- "LaMET", Ji, PRL 110 (2013); SCPMA57 (2014); Ji, Liu, Liu, Zhang and YZ, RMP 93 (2021);
- Collins, 2011 book, Ch. 10, on Sudakov form factors.

Relating LR and Collins TMDs

Relating LR and Collins TMDs

Collins scheme:

$$f_{i/h}^C(x, \overrightarrow{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{y_B \to -\infty} \frac{B_{i/h}}{\sqrt{S_C}}$$

LR scheme:
$$f_{i/h}^{\text{LR}}(x, \overrightarrow{b}_T, \mu, \zeta, y_P - y_B) = \lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^{'} \frac{B_{i/h}}{\sqrt{S_C}}$$

- Large $-y_B$ corresponds to a hard momentum scale $\zeta_{LR} = 4x^2M^2\sinh(y_P y_B)$.
- Exchange of $\epsilon \to 0$ and $\zeta_{LR} \to \infty$ should not affect the infrared physics, so the difference between the orders of limits is compensated by perturbative matching !

$$f_{i/h}^C(x,\overrightarrow{b}_T,\mu,\zeta) = C^{-1}\left(\frac{\zeta_{\text{LR}}}{\mu^2}\right) f_{i/h}^{\text{LR}}(x,\overrightarrow{b}_T,\mu,\zeta,y_P - y_B) + \mathcal{O}(y_B^{-k}e^{y_B})$$

Verified at 1-loop 🗸

- "LaMET", Ji, PRL 110 (2013); SCPMA57 (2014); Ji, Liu, Liu, Zhang and YZ, RMP 93 (2021);
- Collins, 2011 book, Ch. 10, on Sudakov form factors.

Matching between quasi- and Collins TMDs

$$\lim_{\tilde{\eta} \to \infty} \tilde{f}_{q/h}(x, \overrightarrow{b}_T, \mu, \zeta, x \widetilde{P}^z, \tilde{\eta}) = C\left(\frac{\tilde{\zeta}_z}{\mu^2}\right) f^C_{i/h}(x, \overrightarrow{b}_T, \mu, \zeta) + \mathcal{O}(y_{\tilde{p}}^{-k} e^{-y_{\tilde{p}}})$$

$$\tilde{\zeta}_z = (2x\tilde{P}^z)^2 = \zeta_{\rm LR}$$

Moreover,

$$\tilde{f}_{q/h} = \frac{B_{q/h}}{\sqrt{S_C(b_T, \mu, \tilde{\eta}, 2y_n, 2y_B)}} - -$$

Not directly calculable on the lattice

Naive quasi soft function, lattice calculable \checkmark = $\left[\frac{B_{q/h}}{\sqrt{S_C(b_T, \mu, \tilde{\eta}, 0, 0)}}\right] \left[\frac{\sqrt{S_C(b_T, \mu, \tilde{\eta}, 0, 0)}}{\sqrt{S_C(b_T, \mu, \tilde{\eta}, 2y_n, 2y_B)}}\right]$

- Reduced soft function: $S_r(b_T, \mu) = [g_S^q(b_T, \mu)]^2$
- Methods for calculation has been proposed and explored on the lattice.
 - Ji, Liu and Liu, NPB 955 (2020);
 - Q.-A. Zhang, et al. (LP Collaboration), PRL 125 (2020);
 - Y. Li et al., PRL 128 (2022).

Factorization formulas

$$\lim_{\tilde{\eta} \to \infty} \tilde{f}_{q/h}(x, \overrightarrow{b}_T, \mu, \tilde{\eta}, \zeta, x \tilde{P}^z) = C\left(\frac{\zeta_z}{\mu^2}\right) f_{i/h}^C(x, \overrightarrow{b}_T, \mu, \zeta) + \mathcal{O}(y_{\tilde{P}}^{-k} e^{-y_{\tilde{P}}})$$

 $\mathcal{O}\left(\frac{b_T}{\tilde{\eta}}, \frac{1}{(xb_T\tilde{P}^z)^2}, \frac{1}{\tilde{P}^z\tilde{\eta}}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right)$

$$\frac{\tilde{f}_{i/h}^{\text{naive}}}{g_{S}^{q}(b_{T},\mu)} = C\left(\frac{\tilde{\zeta}_{z}}{\mu^{2}}\right) e^{\frac{1}{2}\gamma_{\zeta}^{q}(b_{T},\mu)\ln\frac{\tilde{\zeta}_{z}}{\zeta}} f_{q/h}^{C}(x,\vec{b}_{T},\mu,\zeta) + \mathcal{O}(y_{\tilde{P}}^{-k}e^{-y_{\tilde{P}}})$$

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).
- A. Vladimirov and A. Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, 2201.08401.

Implications

The P^z-evolution;

 Same proof applies for the gluon quasi TMD and for all spin-dependent quasi TMDs;

Both gluon and singlet quark TMDs are calculable on the lattice!

 No mixing between quarks of different flavors, quark and gluon channels, or different spin structures;

Verified at 1-loop 🗸

Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).

Calculation of gluon TMDs easier than anticipated!

$$\frac{d}{d\ln(2x\tilde{P}^z)} \ln \lim_{\tilde{\eta}\gg b_T} \tilde{B}_{q/h}^{[\tilde{\Gamma}]}(x,\vec{b}_T,\mu,\tilde{\eta},x\tilde{P}^z) = \gamma_{\zeta}^q(b_T,\mu) + \gamma_C^q(2x\tilde{P}^z,\mu)$$
Perturb

Perturbative

Lattice calculation of the Collins-Soper kernel:

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- M. Ebert, I. Stewart, **YZ**, PRD99 (2019).

NLL resummation in the Wilson coefficient: $\gamma_C^q(2x\tilde{P}^z,\mu) = \frac{d}{d\ln(2x\tilde{P}^z)}\ln C_q(x\tilde{P}^z,\mu)$

• Ebert, Schindler, Stewart and YZ, 2201.08401.

Implications

 Ratios of TMDs and their *x*-moments should be calculated in the *x*-space;

$$\lim_{\tilde{\eta}\to\infty}\frac{\tilde{B}_{q_i/h}^{[\Gamma_1]}(x,\vec{b}_T,\mu,\tilde{\eta},x\tilde{P}^z)}{\tilde{B}_{q_j/h'}^{[\tilde{\Gamma}_2]}(x,\vec{b}_T,\mu,\tilde{\eta},x\tilde{P}^z)} = \frac{f_{q_i/h}^{[\Gamma_1]}(x,\vec{b}_T,\mu,\zeta)}{f_{q_j/h'}^{[\Gamma_2]}(x,\vec{b}_T,\mu,\zeta)}$$

• Factorization for the MHENS TMD.

Additional challenges beyond tree-level renormalization/matching:

• *bz*-dependent renormalization

Linear: $\propto (2 |\eta v| + \sqrt{\tilde{b}_z^2 + b_T^2})/a$ Cusp: $\propto \left[3 - \frac{2\tilde{b}^z}{b_T} \tan^{-1} \frac{b_T}{\tilde{b}^z}\right] \ln(a)$

- *bz*-dependent soft function?
- Ratios of the *x*-moments of TMDs can be calculated with MHENS beam functions at $\tilde{b}^z = 0$ with tree-level matching;
- With proper lattice renormalization and soft function subtraction, the MHENS scheme should be equivalent to the LR scheme.

Outline

- Introduction to TMDs
- Lattice TMDs
 - LaMET and Quasi-TMDs
 - Lorentz-invariant approach (MHENS scheme)
- Relation between lattice and continuum TMDs
- First lattice results
 - Collins-Soper kernel for TMD evolution
 - Soft function

Collins-Soper kernel

Results by different groups with

different systematics. 0.0 ____ ▼___ -0.5-1.0Regensburg / NMSU 21 SWZ 20 ∇ This work ()ETMC / PKU 21 LPC 20Δ \diamond -1.50.20.3 0.40.50.0 0.1 b_T [fm]

- SWZ20, P. Shanahan, M. Wagman and YZ, PRD 102 (2020);
- Regensburg/NMSU21, Schlemmer, Vladimirov, Zimmerman, Engelhardt, Schäfer, JHEP 08 (2021);
- LPC20, Q.-A. Zhang, et al. (LPC), PRL 125 (2020);
- ETMC/PKU21, Y. Li et al., PRL 128 (2022).

Comparison with phenomenology

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 137 Pavia19: A. Bacchetta et al., JHEP 07 (2020) 117

(Green points), P. Shanahan, M. Wagman and YZ, PRD 104 (2021).

Reduced soft function

With the quasi beam function, soft function, and Collins-Soper kernel calculable, we can obtain the full TMD from lattice QCD!

Conclusion

- New large-rapidity (LR) scheme;
- The quasi TMD is equivalent to the LR scheme through Lorentz invariance;
- The LR and Collins schemes differ by the order of UV renormalization and light-cone limits, so we can perturbatively match them;
- We derive the factorization formula for both quark and gluon quasi TMDs using such relations;
- There is no mixing between quarks of different flavors, quark and gluon channels, or different spin structures.

Drell-Yan production of lepton pair

$$n_{a} = (1,0,0,1)/\sqrt{2}, \qquad n_{b} = (1,0,0,-1)/\sqrt{2}$$

$$q^{\mu} = l^{\mu} + \bar{l}^{\mu}, \qquad Q^{2} = q^{2}, \qquad Y = \frac{1}{2} \ln \frac{n_{a} \cdot q}{n_{b} \cdot q}$$

$$s = (P_{A} + P_{B})^{2}$$

$$x_{a} = Qe^{+Y}\sqrt{s}, \qquad x_{b} = Qe^{-Y}\sqrt{s}$$

Collinear factorization:

$$\frac{d\sigma_{\rm DY}}{dQ^2 dY} = \sum_{i,j} \int_{x_a}^{1} d\xi_a \int_{x_b}^{1} d\xi_b \ f_{i/h_A}(\xi_a) \ f_{i/h_A}(\xi_b) \frac{d\hat{\sigma}_{ij}(\xi_a,\xi_b)}{dQ^2 dY} \Big[1 + \mathcal{O}\Big(\frac{\Lambda_{\rm QCD}^2}{Q^2}\Big) \Big]$$

Drell-Yan production of lepton pair

$$n_{a} = (1,0,0,1)/\sqrt{2}, \qquad n_{b} = (1,0,0,-1)/\sqrt{2}$$

$$q^{\mu} = l^{\mu} + \bar{l}^{\mu}, \qquad Q^{2} = q^{2}, \qquad Y = \frac{1}{2} \ln \frac{n_{a} \cdot q}{n_{b} \cdot q}$$

$$s = (P_{A} + P_{B})^{2}$$

$$x_{a} = Qe^{+Y}\sqrt{s}, \qquad x_{b} = Qe^{-Y}\sqrt{s}$$

Collinear factorization:

$$\frac{d\sigma_{\rm DY}}{dQ^2 dY} = \sum_{i,j} \int_{x_a}^{1} d\xi_a \int_{x_b}^{1} d\xi_b \ f_{i/h_A}(\xi_a) \ f_{i/h_A}(\xi_b) \frac{d\hat{\sigma}_{ij}(\xi_a,\xi_b)}{dQ^2 dY} \Big[1 + \mathcal{O}\Big(\frac{\Lambda_{\rm QCD}^2}{Q^2}\Big) \Big]$$

Ji-Ma-Yuan (JMY) scheme

Analytically continuable from the LR scheme (y_P-y_B to ϱ).