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Phase diagram: division of the T-u plane into regions based on the
qualitative physical properties of strongly interacting matter

My primary interest in research can be cast into two categories:
perturbative and non-perturbative QCD.
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Transverse Momentum Dependent distributions (TMDs): 3D

imaging in momentum Space[A- Bacchetta et al., 2017, D. Callos et al., 2020, P.
Barry et al., 2022, etc.]

e Both longitudinal and transverse motion

 What are the quantum correlations between the motion of the
guarks/gluons, their spin and the spin of the proton? (TMD PDFs)

e Similarly precision information on hadronization (TMD FFs)

e TMDs
® Jets



Transverse Momentum Dependent distributions (TMDs): 3D

imaging in momentum Space[A- Bacchetta et al., 2017, D. Callos et al., 2020, P.
Barry et al., 2022, etc.]

e Both longitudinal and transverse motion

 What are the quantum correlations between the motion of the
guarks/gluons, their spin and the spin of the proton? (TMD PDFs)

e Similarly precision information on hadronization (TMD FFs)

Jets for 3D imaging

e Jets production: correlated with TMD PDFs,

without fragmentation functionlHERA, PRL 2021,
M.Arratia et al., 2020]

e Jet substructure: One can further measure

distribution of hadrons inside the jet (TMD
JFFS)[Z- Kang et al., 2020, M.Arratia et al., 2020, Z. Kang et

al., 2021, Z. Kang et al., 2022]

Novel probes for 3D structure of the nucleon .
and nuclei (encoded in TMD PDFs, FFs) = 4 QU .
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Non-perturbative QCD:
Quantum computing for QCD



Research Interests

Non-perturbative QCD:

QUANTUM
GOMPUTING

Image by Bartlomiej K.
Wroblewski on Shutterstock

Quantum computing for QCD

Motivation:

e Quantum computing is a relatively new and upcoming technology that uses
the principles of quantum physics to solve complex problems.

e |f powerful and reliable quantum computers become reality in the upcoming
years, can we begin simulating matter and its dynamics from first-principles
using such a new computing tool?


https://www.shutterstock.com/ja/image-illustration/quantum-computer-background-3d-render-1571766802
https://www.shutterstock.com/ja/image-illustration/quantum-computer-background-3d-render-1571766802

Quantum Simulation of
Chiral Phase Transitions

arXiv:2112.03944, JHEP 08 (2022), 209 U |
In collaboration with A. M. Czajka, Z.-B. Kang, H. Ma A.M. Czajka Z.-B.Kang H. Ma

UCLA UCLA
! 1
UCLA MIT

Studying chirality imbalance
with quantum algorithms

arXiv:2210.03062 |
. . . S SN ||
In collaboration with A. M. Czajka, Z.-B. Kang, Y. Tee A.M.Czajka Z.-B.Kang Y. Tee

UCLA

We apply the Quantum Imaginary Time Evolution (QITE) algorithm to simulate the
chiral phase transition in 1+1-dimensional Nambu-Jona-Lasinio (NJL) model



Quantum Simulation of
Phase Transitions

Background

Quantum Computing, NJL model and the chiral magnetic effect (CME)
Nambu-Jona-Lasinio (NJL) model
Quantum Imaginary Time Evolution (QITE)

Results

Summary
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Why QC for QCD?

From Quantum Computing:

* Progress in quantum computing

* Accessibility to quantum simulators
and devices:

1. Enter through cloud services

2. Build quantum circuits using single-
qubit gates and CNOT gate

3. Obtain outputs from simulators and
hardwares

Images by IBMQ
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Why QC for QCD?

From QCD:

e Problems in QCDIJoseph I. Kapusta et al., 2006]-
* Finite density QCD (sign problem)A- M. Czajka et al,. 2021]

e Real-time evolution for QCD[Dmitri Kharzeev et al., 2020]

Image by IBMQ

 Hard interaction, parton showerlKhadesjah Bepari et al. 2020]

Quantum Chromodyng



Why QC for QCD?

From QCD:

e Problems in QCDIJoseph I. Kapusta et al., 2006]-
* Finite density QCD (sign problem)A- M. Czajka et al,. 2021]
e Real-time evolution for QCD[Dmitri Kharzeev et al., 2020]

 Hard interaction, parton showerlKhadesjah Bepari et al. 2020]

e A guantum computer can do better than a classical
one for QCD jn[John Preskill, 2018]
e Study particle collisions at strong coupling

 Explore structure and properties of strongly
Interacting nuclear matter

Image by IBMQ

Quantum C¥
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Why QC for QCD?

From QCD:

e Problems in QCDIJoseph I. Kapusta et al., 2006]-

Image by IBMQ

e Finite density QCD (sign problem)lA- M. Czajka et al,. 2021]

¢ Real-time evolution for QCDIPmitri Kharzeev et al., 2020]

* Hard interaction, parton showerlkhadeejah Bepari et al. 2020]

e A guantum computer can do better than a classical
one for QCD in[Wohn Preskill, 2018]

* Study particle collisions at strong coupling

* Explore structure and properties of strongly
Interacting nuclear matter

= We will show how a quantum algorithm helps in
studying QCD chiral phase transition

Quantum C¥
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* To investigate the structure of the QCD chiral phase diagram,
calculations are typically carried out in lattice QCD.

* However, the utility of this traditional approach is limited by the fermion
sign problem.

e At u # 0, one finds the complex conjugate of the Fermion determinant
[detM(p)]* = [detM(—p*)] with M T () = y<M(—pu*)ys, the
Euclidean QCD action § is no longer constrained to be real,

Image by the Cyprus Institute
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Z =y(iy, 0" —m+pyp)y—7

p
S = J dTJXm/_/ [iyﬂa/" —m+ ,uy()] Wy = sz)Cl/_/Ml//
0

 With the QCD Lagrangian and action given above, the Boltzmann factor

exp|—3S] can no longer be used as a weight for a Monte Carlo evaluation
of thermal expectation values.

* Though many attempts were developed to overcome or avoid the sign
problem, results are only consistent at small 4 (#/T < 1), but not reliable
at larger u

Perturbative QCD
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QCD Phase diagram

The “current conjecture” for the QCD phase diagram
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Phase diagram: division of the 7T-u plane into
regions based on the qualitative physical
properties of strongly interacting matter
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QCD Phase diagram

e Complex phase structure
of strongly interacting
matter in theory

* |n experiment (e.g. Beam
Energy Scan at RHIC), one
of the most accessible
ways to characterize
properties of QCD

The “current conjecture” for the QCD phase diagram
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Vacuum Matter ~__ Neutron Stars
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0 MeV 900 MeV
Baryon Chemical Potential
Phase diagram: division of the 7T-u plane into
regions based on the qualitative physical
properties of strongly interacting matter
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Chiral Magnetic Effect (CME)

e |[tis of great interest to study how non-perturbative features of QCD

are affected by thermal excitations in a strong magnetic field B at high
temperatureslP. Kharzeev and A. Zhitnitsky, 2007] gnd by baryon-rich matter at

finite chemical potentials p and pi5[P- Kharzeev, etal,, 2015],

| z f
. Reaction
In non-central collisions of plane

N/ L

heavy-ion collisions,
a strong magnetic field is

created L \PR [Dmitri Kharzeev, 2013]

X (defines ‘¥,,)




19

Chiral Magnetic Effect (CME)

e |[tis of great interest to study how non-perturbative features of QCD

are affected by thermal excitations in a strong magnetic field B at high
temperatureslP. Kharzeev and A. Zhitnitsky, 2007] gnd by baryon-rich matter at

finite chemical potentials p and pi5[P- Kharzeev, etal,, 2015],

e (Quarks’ spins preferably aligned along the B field direction
e Quarks with specific chirality have their momentum p’ direction correlated with spin § orientation

1.



20

Chiral Magnetic Effect (CME)

e |[tis of great interest to study how non-perturbative features of QCD

are affected by thermal excitations in a strong magnetic field B at high
temperatureslP. Kharzeev and A. Zhitnitsky, 2007] gnd by baryon-rich matter at

finite chemical potentials p and pi5[P- Kharzeev, etal,, 2015],

e In the presence of chirality imbalance ps # 0, there will be a net correlation between average

spin and momentum
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Chiral Magnetic Effect (CME)

e |[tis of great interest to study how non-perturbative features of QCD

are affected by thermal excitations in a strong magnetic field B at high
temperatureslP. Kharzeev and A. Zhitnitsky, 2007] gnd by baryon-rich matter at

finite chemical potentials p and pi5[P- Kharzeev, etal,, 2015],

3. ® us > (leads to an electric current along the magnetic field



Chiral Magnetic Effect (CME)

e |n the presence of a magnetic field, an imbalance is produced
between right- and left-handed quarks, namely the so-called
Chiral Magnetic Effect (CM E)[D Kharzeev and A. Zhitnitsky, 2007]

D. Kharzeey, et al., 2015]

e By introducing a finite chiral chemical potential 5 that imitates the effects of the
topological charge changing transitions, one can study the QCD phase diagram.

22



Why Nambu-Jona-Lasinio model?

e The NJL modellY- Nambu and G. Jona-Lasinio, 1961] |5 gn effective model for
QCD

* A convenient and practical tool to study the QCD chiral phase
transition

Simulating QCD is not possible at the moment, we work with a
simple model

Z = yiy,0" — my + g(ry)”
A renormalizable and asymptotically free (1+1)-dimensional theory

e Comprised of fermions interacting via four-fermion contact
interaction.

23



Why Nambu-Jona-Lasinio model?

e The NJL modellY- Nambu and G. Jona-Lasinio, 1961] |5 gn effective model for
QCD

* A convenient and practical tool to study the QCD chiral phase
transition

Simulating QCD is not possible at the moment, we work with a
simple model

* We study the chiral phase transition of NJL model with non-zero

chemical potential u (the imbalance between matter and antimatter)
and Us (chirality imbalance)

Z =iy, 0" — my + g(pw)*
U
Z =y(iy, 0 —my+g Py + prygw + psiyors

= amenable to analytical calculations at finite temperature
and chemical potential

24



Analytical calculation
of the chiral condensate in (1+1) dimensional NJL model:

Z =iy, 0" — my + gWw)* + piryoy + pswyors

In (1+1) dimensions, the gamma matrices are given by

Yo=2Z, n=—1, 5=y =—X

Mean field approximation: wy = (w) + o, where () is the thermal
average and o is a real scalar field fluctuations, assumed to be small, i.e.

lo/{yy) | < 1

25



Analytical calculation
of the chiral condensate in (1+1) dimensional NJL model:

Z =iy, 0" — my + gWw)* + piryoy + pswyors
 |n (1+1) dimensions, the gamma matrices are given by
V=24 rn=—t,ys=yyn=—X

e Mean field approximation: Wy = (W) + o, where () is the thermal
average and o is a real scalar field fluctuations, assumed to be small, i.e.

lo/{yy) | < 1

= Z =y(iy,0" —m+2g(Wy) + pyoy — g(pw)” + 0(c%)
~|p(iy,0" — M+ py))y|— 7

Free Dirac fermion at y with effective mass M

(M — m)?
4g

Effective mass M = m — 2g{(ywy) and potential 7" =

20



Analytical calculation
of the chiral condensate in (1+1) dimensional NJL model:

Z =iy, 0" — my + gWw)* + piryoy + pswyors
* The Grand Canonical Potential Q2:

2 (00)
Q(u, s, M) =7 — — Z [ [T In(1 + e 7@y & T In(1 + e P @) 4 w, | dk .
T = ’

T =M-mPldg  w,= \/ k+su)? + M2 s=+1

e For comparison with numerical results with the lattice spacing a, the natural
momentum cutoff is A = z/a

e Next, we are able to write down the Grand Canonical Potential {2 and numerically
aQ(/’ta M5, Ta M) .
oM

0.

solving the gap equation

27



Analytical calculation
of the chiral condensate in (1+1) dimensional NJL model:

oM

« The gap equation

£ 103
* (1+1)-d NJL model: One can easily carry out the g 11(;21
numerical integral on a classical computer 100
without worrying about the sign problem with 2
Monte Carlo methods. ety 200

re(%l,) 300 300 et

(O

50 100 150 200 250 300
Chemical Potential (MeV)

28
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Analytical calculation
of the chiral condensate in (1+1) dimensional NJL model:

oM

(1+1)-d NJL model: One can easily carry out the
numerical integral on a classical computer
without worrying about the sign problem with
Monte Carlo methods.

The gap equation

We chose u, T'in the range [0, 300] MeV using
the model parameters m = 100 MeV and
g=1,a=1 MeV_lat,u5=O.

M — m as expected since the NJL model is an
asymptotically free model.

At asymptotically high 1 or i, we expect to
recover a free field theory.

(A9IN) SSeIN

103

102

101

100

0

To,. 100
pe"atare 200 00
(Mel/) 300300 e

(O

50 100 150 200 250 300
Chemical Potential (MeV)
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Discretization of the NJL Hamiltonian:
Ingredients of the quantum algorithms

e Starting from the Lagrangian density
Z =iy, 0" — my + gWw)” + piryoy + pswyors
The NJL Hamiltonian density is
H = iy 0; +my — gWprw)* — uryy — usyoysy

e Given a Dirac fermion field y(x) with two components, we show the
discretization of the NJL Hamiltonian in the lattice form suitable for a
digital quantum simulation by

(1) Writing the Dirac fermion field in terms of the staggered fermion field as

applied in lattice QCD: we assign 2n sites to the staggered fermion field!- Kogut

and L. Susskind, 1975] -
A2n
p(x =n) =
A2n+1



Discretization of the NJL Hamiltonian:
Ingredients of the quantum algorithms

(1) Given a Dirac fermion field y(x) with two components, we assign 2n sites
to the staggered fermion field!/- Kogut and L. Susskind, 1975]

v=n=( )

* (2) Then, for the purpose of quantum simulation, we apply the Jordan-
Wigner transformationlP. Jordan and E. Wigner, 1928] {0 convert staggered fermion
field to spin representation, namely each staggered fermion field is given by
a string a Pauli matrices,

X . 'Y I’l—l
g, == 2’ T (~iz)
=)

where the subscripts indicate the index of qubit where the single-qubit gates
are acting on. Therefore, the Hamiltonian in spin representation is given.



Nambu-Jona-Lasinio (NJL) model

o X =y(iy,0, + my — g(pw)* — uirygy — UswyoYsy

. N—1 N—-1

e l |
dxvf%aﬂ// - = Z Z [)(rj)(rﬁl _)(Z_l_l)(n] — Z E (Xan+1 + YnYn+1> >
: n=0 n=0
» N—1 N—1 7
dxjy = Y (~1' 5z = 2, (=1
: n=0 n=0
. 1 N/2—1 o) N/2—1 N-1
Xyl =— Y. |1 100 2| = - 2—[ Y A+2,)(1+ 2y, - Y (42|
* a n=0 a n=0 n=0
5 N—1 N—1 7
dxygy = ) xin= ), =
] 2
n=0 n=0
N/2—1 1 N/2—1
JXm/_/}’OYSII/ = = Z ()(;n)(hﬁl +%§n+1)(2n) = 2] Z (X0, Yon1 = Y2, X0 41) 5
n=0 n=0

So each part of the Hamiltonian can be first written in the form of the Dirac fermion
fields as shown in the purple background.

32



Nambu-Jona-Lasinio (NJL) model

o« H =(iy,0) + my — g(Iw)* — Wprygw — HsWyoYsw

dxyy =

N-1

Z E (Xan+1 + YnYn+1) ’
n=0

9

. | [V2s! N—1
dx(pry)? — 2_a[ Z (1+2,)1+2,,.,)— Z (I1+Z)
o =0 n=0

N2—1

5 2 (X2nY2n+1 o Y2nX2n+1) )

n=0 n=0

siaggered fermion

Next transformed to staggered fermion fields on lattice as shown in blue

33



Nambu-Jona-Lasinio (NJL) model

o X =piy,0, + my — gWw)* — prygy — Uspyorsy

. N-—1
: ¥

dxyriy|01y = — Z [)(lj)(rﬁl _)(n+1)(n] —
- n=0

g N—1
dxry = Y (=)' g5, =

n=0 n
N/2—1

i 2
dx(py? =— ) [)(U( — Xy X ] =
a 2n/t2n 2n+142n+1

n=0
N—-1

dxiyy = ) 1,

n=0
* n=0
N/2—1
JXm/_f}’oVSU/ = = Z (Z;nZ2n+l +%;n +1)(2n) = )
n=0 =0

’ spin representation
Then further transformed to spin Hamiltonian, which can be directly represented by
quantum gates. Here the subscripts indicate the index of qubit where the single-qubit
gates are acting on.

34



Motivations

35

* Eventually, our goal is to compute the QCD phase diagram.
Since traditional lattice QCD method has sign issues, we try to
explore the application of quantum computing on this problem

* Meanwhile, for this simplified model, numerical calculations
can be directly carried out to give exact results for comparison
with quantum simulations, without worrying about the sign
problem in Monte Carlo methods.

Perturbative QCD

Lattice QCD

e —

—

Effective

field
theory

Vacuum




Quantum Simulation of
Phase Transitions

Background
Nambu-Jona-Lasinio (NJL) model

Quantum Imaginary Time Evolution (QITE)

Results Discretization of Hamiltonian
J
Summary Quantum simulation

for finite T

36



Quantum Imaginary Time
Evolution (QITE)

e Evolution from = 0 state under a Hamiltonian H with a

—BH
normalization: | ¥(f)) = |'P(0)) ,

c(p)

where the normalization c(f) = (¥(0) | e =" | ¥(0)), p = 1/T.

37



Quantum Imaginary Time
Evolution (QITE)

e Evolution from = 0 state under a Hamiltonian H with a

—BH
| '¥(0))

normalization: |W(f)) =
c(p)

where the normalization c(f) = (¥(0) | e =" | ¥(0)), p = 1/T.

* In quantum computing, only unitary operator can be
Implemented:

Initial H|y) = ihi % Final
Quantum state o > Quantum state
lw(t = 0)) lp (D)) = e y(r = 0))
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Quantum Imaginary Time
Evolution (QITE)

e Evolution from = 0 state under a Hamiltonian H with a

—BH
| '¥(0))

normalization: |W(f)) =
c(p)

where the normalization c(f) = (¥(0) | e =" | ¥(0)), p = 1/T.

* In quantum computing, only unitary operator can be
Implemented:

Initial H|y) = ihi % Final
Quantum state o < Quantum state
lw(t = 0)) lw (D)) = e M | y(t = 0))
Quantum Circuit Quantum Mechanics

Initial qubit array < |w(t = 0))

Quantum gate array < e U7
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Quantum Imaginary Time
Evolution (QITE)

e Evolution from = 0 state under a Hamiltonian H with a

—BH
normalization: | ¥(f)) = |'P(0)) ,

c(p)

where the normalization c(f) = (¥(0) | e =" | ¥(0)), p = 1/T.

* The operator e PHis non-unitary = cannot be implemented on a quantum circuit

= Need a method to convert this non-unitary operator into a unitary operator
that could be applied to a quantum circuit
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Quantum Imaginary Time
Evolution (QITE)

e Evolution from = 0 state under a Hamiltonian H with a

—BH
normalization: | ¥(f)) = |'P(0)) ,

c(p)

where the normalization c(f) = (¥(0) | e =" | ¥(0)), p = 1/T.

* The operator e PHis non-unitary = cannot be implemented on a quantum circuit

= Need a method to convert this non-unitary operator into a unitary operator
that could be applied to a quantum circuit

Quantum imaginary time evolution (QITE) algorithm[Mario Motta, et al, Nature Physics, 2020]

= Calculate the thermal properties of the NJL Hamiltonian at finite 7



Quantum Imaginary Time Evolution (QITE)

42

e We first decompose the imaginary time evolution operator e ” into N = f/Ap
steps:

L (e_AﬂH)N + O(Aﬂz)

Then the thermal state at f + Af is evolved from the state at  with a small step:
—ApH

e
|Y(F+ Ap)) = | 'Y(P)) -
\/ c(Ap)
State preparation (separated into N steps):
) —Ff— Ty — U — - — l7j — e — Oy —
~ e—AﬁH

Non-unitary: —h— =



Quantum Imaginary Time Evolution (QITE)

43

State preparation (separated into N steps):

¥y —F,— O, — O, — *+ — UJ — e — Oy —
- g
Non-unitary: — U — =
Velp)
* To perform the above operation on a quantum circuit, we approximate the
non-unitary evolution e =P \ith a unitary operation e_iAﬁA, s.t.

—ApH P ~ AV P |
—c(Aﬁ)e | H(P)) ~ e | 'Y(£))

where c(Af) = (P(f) | e > | (p))

= Same effects when acting on a
quantum state for Af



Quantum Imaginary Time Evolution (QITE)
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e We parametrized the Hermitian operator A with a linear combination of Pauli
operators with a,: a composite parameter

U
(runs over all possible combinations of the Pauli gates acting on all the qubits)
Nﬂ
A@ = Y 0, = Y, G o0
7 i0>”'»inq—1

e Next we need to minimize the objective function given by an inner product
2
F@ = ||1a%,8) - 1a%,®) | |, where



Quantum Imaginary Time Evolution (QITE)

45

e We parametrized the Hermitian operator A with a linear combination of Pauli
operators with a,: a composite parameter

U
(runs over all possible combinations of the Pauli gates acting on all the qubits)
Nﬂ
A@ = Y 0, = Y, G o0
7 iO""’inq—l

-
1800 = <¢me“‘”“”ﬂ” ] 'W”>

|5+ Ap))

change rate of quantum state evolved by e PH



Quantum Imaginary Time Evolution (QITE)
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e We parametrized the Hermitian operator A with a linear combination of Pauli

operators with a,. a composite parameter

(runs over all possible combinations of the Pauli gates acting on all the qubits)

A@ = Y 0, = Y, G o0

1z i0>""lnq—1
e Next we need to minimize the objective function given by an inner product

-----------------------------------------------------------

F@ = |[1a%,(p) - 1%, | [ where

W) = FP+ AD) - 1¥P)

L | A
1AM =55 <me“‘”"1’<ﬂ” - 'W») 180 = 5 () - 1)

|5+ Ap)) WP+ Ap))

change rate of quantum state evolved by B change rate of quantum state evolved by e

iBA



Quantum Imaginary Time Evolution (QITE) 47

* Next we need to minimize the objective function F(a) given by an inner product

‘ ‘ | A, (f)) — |A‘11A(ﬂ)>‘ ‘2, where

1
| A\PH(ﬂ» —

1
Ap <\/c(Aﬂ)

e~ MH | P(B)) — |‘P(ﬂ))> | AP, (B)) = Aiﬁ (eT2PA1(B)) — | P(B)))

*Then the objective function F(a) is
F(a) = ((AY(B) | — (A, P(B) | ) (1AYL(B)) — | AP (B)))
= (AY (P | AY L (P)) — Z bﬂaﬂ + Z a,5,,@,) | Linear system of a
H v

a-independent function

Sul= (¥(B) 656,19, |b, E ———(¥(P)| (o/H - Ha,) |¥(H))

V c(Af)

Constructed from known quantities



Quantum Imaginary Time Evolution (QITE)
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e Then the objective function F(a) is

F(a) = ((A¥5(B) | = (AP D)) (1AYL(B)) — | A F(B)))
= { AV (B) | AW, B)) — 2 bﬂ a, + Z a, Sﬂyay Linear system of a
H 2%

a-independent function

S, = (¥(B)| 0o, ' ¥(P)). b, = - \/;) (¥(B)| (/H — Ho,) | ()

c(A

dF(a)

daﬂ

*Thus minimizing F(a) with respective toa < 0

> S+SHha=0b

e Insert'a back to the definition of A:

A(a) — Z a’uUﬂ — Z aiO""’inq—IGiOH.O-inq_l
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e Then the objective function F(a) is

F(a) = ((A¥5(B) | = (AP D)) (1AYL(B)) — | A F(B)))
= { AV (B) | AW, B)) — 2 bﬂ a, + Z a, Sﬂyay Linear system of a
H 2%

a-independent function

S,, = (¥(B) | 6j0, | B(B)), b, = - \/(ZT) (¥(B)| (cIH — Ho,) 1¥(B))
C
dF(a)

daﬂ

*Thus minimizing F(a) with respective toa < 0

> S+SHha=0b

e Insert'a back to the definition of A:

Aa) = Z a0, = Z Ligy i1t Oy
H iO’""inq—l

e H(B)) ~ e AP (P))

1
\ c(Af)



Quantum Imaginary Time Evolution (QITE) 50

* Now with the non-unitary operator e ~2PH \ritten in terms of a unitary

operator e_iAﬁA, we are able to evolve the state to imaginary time f using

—ABH\N
|F(p)) = ™) | 'P(0)) = (e_iAﬂA)NI‘P(O)

State preparation:

|\y>7;§ e e A _UN_IE_

Unitary: — — — pTiApA

= All the operators can be implemented on a quantum computer

e To calculate the thermal average of a given observable, we measure the
observable between two thermal states.
- Tre0) _ (P(B12)| 0P (B/I2))

(0) = ——— =
Te ) (P(BID) ¥ (HID)
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—ABH\N
W (p)) = ™) |'F(0)) ~ (e_iAﬂA)NI‘P(O»

c(p)

e Chiral condensate () as a function of f3.

* (Compare the exact diagonalization (using the discretization of the NJL Hamiltonian)
and QITE simulations.

n=150 MeV

¢  Exact Diagonalization \ Exact Diagonalization
—— QITE, Ap=0.001 MeV~! QITE, AB=0.001 MeV~!
——- QITE, Ap=0.005 MeV~! QITE, AB=0.005 MeV~!

|
o
W

¢  Exact Diagonalization
—— QITE, Ap=0.001 MeV-~"!
=== QITE, Ap=0.005 MeV~!
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Coupling constant ¢ = 1 and the quark mass m = 100 MeV on a lattice grid withspacing @ = 1 MeV~!




Quantum Imaginary Time Evolution (QITE)

52

—ABH\N
W (p)) = ™) |'F(0)) ~ (e_iAﬂA)NI‘P(O»

c(p)

e Expected by trotterization: more accurate quantum simulations with smaller Ap.

e In the rest of this talk, we will apply step Af = 0.001/MeV and show the effective
mass M at various finite chemical potentials and temperatures.

n=150 MeV

¢  Exact Diagonalization \ Exact Diagonalization
—— QITE, Ap=0.001 MeV~! QITE, AB=0.001 MeV~!
——- QITE, Ap=0.005 MeV~! QITE, AB=0.005 MeV~!

|
<
W

¢  Exact Diagonalization
—— QITE, Ap=0.001 MeV-~"!
=== QITE, Ap=0.005 MeV~!

|
—
(9}

>
(]
=S
3
<
72]
5 -1.0
=
o
)
=
3=
=
)

0.00 0.01 0.02 0.03 . . . 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.05
Coldness (MeV~) Coldness (MeV™!) Coldness (MeV~)

Coupling constant ¢ = 1 and the quark mass m = 100 MeV on a lattice grid withspacing @ = 1 MeV~!




Results

W : By working on a (1+1)-d
model, we are able to derive an 00
analytical result by solving the gap a_M=O
equation

= for comparison to the quantum simulations.

* QC: Restriction on (1+1) d enables us to

design a quantum circuit with a small
amount of qubits

= feasibility of implementing such circuit on

currently available hardwares for further
research.

1W(B)) ~ (e724)" | w(0))
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=
Q
8
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|
o
W
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Results

e Demonstrate (1+1)-dimensional NJL chiral phase transition by
plotting () as a function of T, y and s with:

1. Quantum simulation of the thermal states (QITE);

2. Calculate the observables using Hamiltonian in spin representation
(Exact diagonalization);

9.9’
3. Numerically solving the gap equation d_M = 0O (Analytical calculation).

Parameters that will be used in our work are set as:

lattice spacing @ = 1 MeV~!, bare mass m = 100 MeV and coupling constant g = 1.
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e (Consistent results among the three methods

chiral symmetry
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QITE

= Exact Diagonalization

p=0 MeV
p=25MeV
p=50 MeV
p=75MeV
p=100 MeV
p=125 MeV
p=150 MeV
p=175 MeV
p=200 MeV

e Nontrivial chiral symmetry restoration at 0 < 7' < 25 MeV, 100 < u < 125 MeV

e Converge to 0 at larger T  as expected by the asymptotic freedom of the NJL

model
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p=0 MeV
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Nontrivial chiral symmetry restoration at 0 < 7'< 25 MeV, 100 < u < 125 MeV

Converge to 0 at larger T as expected by the asymptotic freedom of the NJL

model
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Converge to O

QITE

= Exact Diagonalization
p=0 MeV
p=25MeV
p=50 MeV
p=75 MeV
p=100 MeV
p=125 MeV
p=150 MeV
p=175 MeV
p =200 MeV
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As temperature or chemical potentials increases, the effective mass M tends to
be bare mass as expected since the GN model is an asymptotically free model.

ps =0
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Thus, at asymptotically
high temperatures/chemical
potentials, we expect to
recover a free field theory.

200 300 400
Temperature (MeV)

QITE

= Exact Diagonalization

pWT=0
pT=1
pT=2
pT=3
WT=4
WT=35
WT=6
WT=7
WT=38




At various values of chiral chemical potentials y5 shown in each panel, we plot the effective

mass as a function of temperature T at various baryochemical potentials y at g = 1:

¢
O  Exact
— p=0MeV

p=>50MeV
p =100 MeV
p =150 MeV
p =200 MeV
p =250 MeV

100 150 100 150
T (MeV) T (MeV)

e Nontrivial chiral symmetry restoration at 0 < 7' < 25 MeV, 100 < u < 125 MeV

e At smaller us, the effective mass M changes more rapidly as a function of 7.
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Summary

e We have constructed a quantum simulation for the chiral
phase transition of the 1+1 dimensional NJL model at finite
temperature and chemical potentials with the QITE algorithm

62



Summary

e We have constructed a quantum simulation for the chiral
phase transition of the 1+1 dimensional NJL model at finite
temperature and chemical potentials with the QITE algorithm

 We observe a consistency among digital gquantum
simulation, exact diagonalization and analytical solution,
indicating rich applications of quantum computing in
simulating finite-temperature behaviors for QCD in the
future.
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Summary

e We have constructed a quantum simulation for the chiral
phase transition of the 1+1 dimensional NJL model at finite
temperature and chemical potentials with the QITE algorithm

 We observe a consistency among digital gquantum
simulation, exact diagonalization and analytical solution,
indicating rich applications of quantum computing in
simulating finite-temperature behaviors for QCD in the
future.

e We expect to use NISQ (Noisy Intermediate-Scale Quantum)
computers for producing consistent and correct answers to
physical problems, some of which cannot be efficiently
solved with classical computing algorithms.
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O Ut I O 0 k  More application of QC in QCD remains to be explored...

Runge-Kutta ¢ = 0.3 ——
Runge-Kutta g = 0.5

Qiskit g = 0.3

Qiskit g = 0.5

Open quantum system

Probabilities

Positive Helicity Amplitude
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[Wibe A. de Jong et al., 2020]
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