All Too Well: Approximating SU(3) by only 1080 group elements _{Hank Lamm}

Formulating the problem of real-time dynamics

 $\frac{\eta}{s}(T) = ???$

Examples: $\nu - N$ scattering, QGP Transport, Hadron Tomography^[1]

$$\langle \prod_{i} \mathcal{O}_{i}(t_{i})
angle = \int_{\psi(0)}^{\psi(T)} \mathcal{D}\psi \prod_{i} \mathcal{O}_{i}(t_{i}) e^{-iS} = \langle \psi(T) | \prod_{i} \mathcal{O}_{i}(t_{i}) | \psi(0)
angle$$

We are concerned with nonperturbative results

[1]

Carena, M. et al. In: Snowmass 2021 LOI TF10-077 (2020).

Monte Carlo methods struggle with sign problems

$|\psi angle$ is a **complex-valued** probability amplitude

Fundamentally, physics needs quantum computers.

$$\langle \psi_{f}|U(t)|\psi_{i}
angle = \langle \psi_{f}|e^{-iHt}|\psi_{i}
angle = \int \mathcal{D}\phi e^{-\mathcal{S}[\phi]}$$

QC can efficently represent superpositions and entanglement

Credit: Scott Aaronson

Hank Lamm

What is the state of QC? Nasty, brutish and short

 $\mathcal{O}(10^{1-2})$ qubits with entangling gate fidelities of $\sim 90-99\%$

 $\implies \mathcal{O}(10^{1-2})$ clock cycles with $\mathcal{O}(10^3)$ CLOPs

Where might we be in ten years?

Roadmaps: $\mathcal{O}(10^3)$ qubits in ≤ 10 years Varying levels of QEC & circuit depth Similar to early LFT: $8^3 \times 20 \mathbb{Z}_2^{[2]}$

Potential for small-scale nonabelian sims

Creutz, M., L. Jacobs, and C. Rebbi. In: Phys. Rev. D 20 (1979). Ed. by Julve, J. and M. Ramón-Medrano.

Hank Lamm

[2]

Glueballs in S(1080)

14 Mar 2022 7 / 35

How do we reckon with finite computers?

QFT is about infinities and how to regulate them

Start from **Kogut-Susskind** Hamiltonian (a **lattice-reg'd** version of *H*):

$$H_{KS} = \frac{c}{a_s} \left[\frac{g_H^2}{2} \sum_l E_l^2 + \frac{1}{g_H^2} \sum_p \text{Tr } U_p \right]$$

Notice there are two **natural** basis: E_l -basis & U-basis **Truncate** the basis, e.g. $E_l \leq E_{max}$ but now you aren't using H_{KS}

$$H_{\text{trunc}} = \frac{c}{a_s} \left[\frac{g_H^2}{2} \sum_l E_l^2 + \frac{1}{g_H^2} \sum_p \text{Tr } U_p \right] + \mathcal{O}_{\text{trunc}}$$

 \mathcal{O}_{trunc} may break symmetries, unitarity – and could be **relevant** operator – and will be affected by **noise**

I'm going to talk about lattice actions

$$\langle x|e^{-iHt}|y\rangle = \int \mathcal{D}\phi e^{iSt}$$

The anisotropic Wilson action is

$$S_{\mathrm{W}} = rac{1}{g_t^2} \xi \sum_t \mathrm{Tr} \ U_t + rac{1}{g_s^2} rac{1}{\xi} \sum_s \mathrm{Tr} \ U_s$$

thru transfer matrix, $\langle i|e^{-a_0H}|j
angle$ derives the H_{KS}

$$H_{KS} = \frac{c}{a_s} \left[\frac{g_H^2}{2} \sum_l E_l^2 + \frac{1}{g_H^2} \sum_p \text{Tr } U_p \right]$$

- H_{KS} isn't the Hamiltonian, but a choice with $O(a_s^2)$ errors^[3]
- Osterwalder-Schrader reflection positivity allows relations via A.C.^[4]

Carena, M., H. Lamm, Y.-Y. Li, and W. Liu. In: (Mar. 2022). arXiv: 2203.02823 [hep-lat].

Luscher, M. In: Commun. Math. Phys. 54 (1977).

Hank Lamm

[4]

So what is a good digitization scheme?

Discrete subgroups allow plug-and-play^{[5][6][7]}

Hank Lamm

Discrete groups can't reach continuum^{[8][9][10]}

Integrating over ϕ leads to S_{eff} with new irreps of G

8] 01	Fradkin, E. H. and S. H. Shenker. In: Phys. Rev. D 19 (1979).
9] 10]	Horn, D., M. Weinstein, and S. Yankielowicz. In: Phys. Rev. D 19 (1979).
10]	Labastida, J. M. F., E. Sanchez-Velasco, R. E. Shrock, and P. Wills. In: Phys. Rev. D 34 (1986).

Hank Lamm

So, discrete groups are continuous groups+Higgs

• Dislike this? note that SO(4) is never recovered for O(1/a) states

• On-going work to understand how Higgs couples to Nonabelian $G^{[11]}$

^[11] Das, S. and A. Hook. In: JHEP 10 (2020). arXiv: 2006.10767 [hep-ph].

So how can we predict a_f ?^[12]

$$\beta_{f,U(1)} = \frac{\log(1+\sqrt{2})}{1-\cos\left(\frac{2\pi}{N}\right)} \approx \kappa_2 N^2, \text{ which extends to } \beta_{f,SU(N)} \approx \kappa N^{\frac{N_c^2-1}{2}}$$

But whereas \mathbb{Z}_N can be taken to ∞ , limited number for SU(N)

$$\beta \propto rac{1}{\log(a)} \implies a_f \propto e^{-\beta_f}$$

So the important question is $a_s > a_f$?

[12] Petcher, D. and D. H. Weingarten. In: Phys. Rev. D22 (1980), Hartung, T., T. Jakobs, K. Jansen, J. Ostmeyer, and C. Urbach. In: (Jan. 2022). arXiv: 2201.09625 [hep-lat].

Hank Lamm

What do we know from Wilson Action?

- $U(1) \rightarrow \mathbb{Z}_N, N > 4$
- $SU(2) \rightarrow \mathbb{BO}, \mathbb{BI}$
- $SU(3)
 ightarrow \mathbb{V}$ has $eta_f = 3.935(5) < eta_s pprox 6$
- One 1152 qubit SU(3) link vs $\sim 4^3$ lattice of 11 qubits for $\mathbb V$ link

But why use the Wilson action?

The Wilson action is inadequate for many issues

$$S_W = \beta \operatorname{Re} \operatorname{Tr}[1 - U_p] \approx -\frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \frac{1}{12} a^2 D_\mu F_{\mu\nu} D_\mu F_{\mu\nu}$$

...which can be treated with Symanzik improvement^[13]

$$\begin{split} S_{LW} = &\beta \operatorname{Re} \operatorname{Tr}[1 - U_p] + \beta_2 \operatorname{Re} \operatorname{Tr}[1 - U_{rt}] + \beta_3 \operatorname{Re} \operatorname{Tr}[1 - U_{par}] \\ \approx &-\frac{1}{4} F_{\mu\nu} F_{\mu\nu} + O(a^4) \end{split}$$

but you could also local terms proportional to other irreps...e.g.^[14]

$$S_{\mathcal{M}} = \beta \operatorname{Re} \operatorname{Tr}[1 - U_{p}] + \beta_{a} \operatorname{Re} \operatorname{Tr}[U_{p}] \operatorname{Tr}[U_{p}^{\dagger}]$$
(1)

[13] Symanzik, K. In: Communications in Mathematical Physics 18 (1970).

Hank Lamm

Bhanot, G. In: Phys. Lett. 108B (1982), Fukugita, M., T. Kaneko, and M. Kobayashi. In: Nucl. Phys. B 215 (1983),
 Hasenbusch, M. and S. Necco. In: JHEP 08 (2004). arXiv: hep-lat/0405012 [hep-lat].

'Same' physics at $\beta_W \equiv f(\beta_f, \beta_a)$ have diff. errors^[15]

Figure 6: Lines of constant physics as predicted by perturbation theory (dotted lines) and tadpole improved perturbation theory (dashed lines) together with the deconfinement transitions for $N_t = 2, 4, 6, and 8$.

Blum, T. et al. In: Nucl. Phys. B442 (1995). arXiv: hep-lat/9412038 [hep-lat].

Hank Lamm

[15]

S_M reduces lattice errors by avoiding FOPT^[16]

^[16]

Hasenbusch, M. and S. Necco. In: JHEP 08 (2004). arXiv: hep-lat/0405012 [hep-lat].

Hank Lamm

Modifed actions can lower truncation needed^[17]

 $f(z) = \beta_0 + \frac{1}{2}\beta_4(z + z^{-1}) + \beta_2 z^2.$

Fukugita, M., T. Kaneko, and M. Kobayashi. In: Nucl. Phys. B 215 (1983).

[17]

Can modified actions help S(1080)**?**

Define a trajectory to study continuum limit

Find β_c for $N_t = 4, 6, 8$ and $N_s = 3N_t$ via separatix^[18]

 $T_c = \frac{1}{N_t a(\beta_c)}$ defines the transition from $\langle P \rangle \approx 0$ and $\langle P \rangle \approx 1$

Francis, A., O. Kaczmarek, M. Laine, T. Neuhaus, and H. Ohno. In: Phys. Rev. D91 (2015).

[18]

$\overline{T_c \sqrt{t_0}}$ suggests a pprox 0.06 fm pprox 2 GeV $^{-1}$ possible $^{[20]}$

 $S = \sum \frac{\beta_0}{3} \operatorname{Re} \operatorname{Tr} U + \beta_1 f(U) \text{ with } f(U) = \{\operatorname{Tr}^2 U + \operatorname{Tr} U^2, |\operatorname{Tr} U|^2\}$ Agrees **below 1%** with SU(3)^[19]

[19] [20]

Kitazawa, M., T. Iritani, M. Asakawa, T. Hatsuda, and H. Suzuki. In: *Phys. Rev.* D94 (2016). Alexandru, A. et al. In: *Phys.Rev.D* 100 (2019). arXiv: 1906.11213 [hep-lat].

Hank Lamm

But what about spectroscopy and higher energies?

Operator basis for glueballs

10,016 independent operators from p = 0 operators across 20 symmetry sectors with $n_{smear} = 2, 4, 6, 8$ levels of *stout-smearing*^[21].

Morningstar, C. and M. J. Peardon. In: Phys. Rev. D69 (2004). arXiv: hep-lat/0311018 [hep-lat].

[21]

Finite-volume m_g are best extracted from **matrices** of temporal correlators,

$$\mathcal{C}_{ij}(\tau) = \sum_{\tau_0} \langle 0 | \mathcal{O}_i(\tau + \tau_0) \mathcal{O}_j(\tau_0)^\dagger | 0
angle,$$

for $\mathcal{O}(\tau) = O(\tau) - \langle 0 | O(\tau) | 0 \rangle$. We construct the matrix $\widetilde{C}(\tau) = U^{\dagger} C(\tau_0)^{-1/2} C(\tau) C(\tau_0)^{-1/2} U,$

where U is built of eigenvectors of $G(\tau_d) = C(\tau_0)^{-1/2}C(\tau_d)C(\tau_0)^{-1/2}$.

The top three lines are for S(1080) and the forth is the SU(3) calibration run. The parameters are: $n_{\rm therm} = 200$, $n_{\rm decorr}$ the number of updates between measurements, n_{ρ} and n_b the number of smearing and blocking levels respectively. For SU(3) the value of $\sqrt{t_0}/a$ is from^[22].

β_0	β_1	n ⁴	$n_{ m decorr}$	n _{meas}	n _{bins}	$\sqrt{t_0}/a$
9.154	-0.9065	16 ⁴	40	652500	1305	1.016(3)
12.795	-1.3677	16 ⁴	40	650000	1300	1.508(3)
19.61	-2.2309	16 ⁴	40	647500	1295	2.000(4)
6.0625		16 ⁴	5	567500	1135	1.962(1)

[22]

Francis, A., O. Kaczmarek, M. Laine, T. Neuhaus, and H. Ohno. In: Phys. Rev. D91 (2015).

Low-lying glueball masses are consistent with SU(3)

irrep	S(1080)	<i>SU</i> (3) ^[23]	<i>SU</i> (3) ^[24]
A_1^{++}	1.301(20)	1.319(8)	1.391(37)
A_{1}^{-+}	2.090(31)	2.049(17)	2.089(20)
E^{++}	1.899(21)	1.902(7)	1.946(17)

S(1080) reproduces SU(3) at $10 \times$ higher energy than $T_c \sqrt{t_0} \approx 0.25$ S(1080) good until at least $\mathcal{O}(10^5)$ qubit devices

[23] [24]

Athenodorou, A. and M. Teper. In: JHEP 11 (2020). arXiv: 2007.06422 [hep-lat].

Chen, Y. et al. In: Phys. Rev. D73 (2006). arXiv: hep-lat/0510074 [hep-lat].

It's time to go

So many things to do!...and lots can be done before the machine exists Strong confidence that S(1080) approximates SU(3) for $a \gtrsim 0.07$ fm

- Digitizing SU(3)
 - **Spectroscopy** for V with dynamical fermions
 - V circuits
- Reducing the errors
 - e.g. Finite volume, finite a, a_t, decimation errors to make realisitic resource estimates
- Algorithms for state prep, smearing
- Investigate desirable properties
 - PDF?, Viscosity?, Cosmology?

Cause we're voung

and we're reckless, We'll take this

way too far