Enabling lattice calculation of TMDs via factorization

Stella Schindler

Theory Seminar, Jefferson Lab Monday, October 3, 2022

Collaborators:

Yong Zhao (Argonne)
Iain Stewart (MIT)
Markus Ebert (Max Planck)

Support:

Based on: 2004.14831 2201.08401 2205.12369

Motivation

Soon, we'll have even higher precision experimental data about the proton's full 3D internal structure...

It's crucial to develop a corresponding first-principles understanding!

Figure: CERN

Roadmap for today's lecture

- 1. Background
- 2. Factorization
- 3. Implications

Figure: I. Stewart

PDFs

Parton Distribution Functions: 1D momentum distribution of quarks and gluons inside the proton

> SLAC-MIT experiment (1969): deep inelastic scattering

Figure: PDG

Transverse momentum dependent PDFs: full 3D picture

- ➤ Key factor in SIDIS, Drell-Yan, W/Z production, Higgs, ...
- Challenge: important non-perturbative contributions *even at* perturbative scales

TMDs in cross-sections

$$\frac{d\sigma^{DY}}{dQ^{2}dY d^{2}\vec{q}_{T}} = \sigma_{0} \sum_{i,j}^{\text{Virtual corrections}} H_{ij}(Q,\mu) \qquad \qquad \zeta = 2(xP^{+}e^{-y_{n}})^{2}$$

$$\times \int \frac{d^{2}\vec{b}_{T}}{(2\pi)^{2}} e^{i\vec{q}_{T} \cdot \vec{b}_{T}} f_{i/h_{1}}(x_{1}, \vec{b}_{T}, \mu, \zeta_{1}) f_{j/h_{2}}(x_{2}, \vec{b}_{T}, \mu, \zeta_{2})$$

Evolution of TMD scales

Possible to relate TMDs at different scales (μ, ζ) & (μ_0, ζ_0) :

$$f_{q}(x, \vec{b}_{T}, \mu, \zeta) = \exp\left[\int_{\mu_{0}}^{\mu} \frac{d\mu'}{\mu'} \gamma_{\mu}^{q}(\mu', \zeta_{0})\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^{q}(\mu, b_{T}) \ln \frac{\zeta}{\zeta_{0}}\right] f_{q}(x, \vec{b}_{T}, \mu_{0}, \zeta_{0})$$
CS kernel

Experiment	μ , $\sqrt{\zeta} \sim Q$
Lattice	μ , $\sqrt{\zeta} \sim 1 \text{ GeV}$

TMDs from experiment

Data used in Scimemi & Vladimirov global fit

Projected EIC data

Figures: Scimemi & Vladimirov (JHEP 2019). EIC Yellow Report (2021).

Global fits to experiment

Split TMD into two pieces:

$$f_i(x, b_T, \mu, \zeta) = f_i^P[x, b^*(b_T), \mu, \zeta] f^{NP}(x, b_T, \zeta)$$

Perturbative piece:

- \triangleright Expand in $\alpha_s(b_T^{-1})$ about collinear PDF
- **Known to three loops!** Ebert, Mistlberger, Vita (JHEP 2020). Luo, Yang, Zhu, Zhu (JHEP 2021).

Non-perturbative piece:

Construct model, fit to data e.g., JAM collaboration

Example non-perturbative model

Example: 11-parameter model

TMD-PDF

$$f_{NP}(x, b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1 + \lambda_3 x^{\lambda_4} b^2}}b^2\right)$$

TMD-FF

$$D_{NP}(x, b) = \exp\left(-\frac{\eta_1 z + \eta_2 (1 - z)}{\sqrt{1 + \eta_3 (b/z)^2}} \frac{b^2}{z^2}\right) \left(1 + \frac{\eta_4 b^2}{z^2}\right)$$

CS kernel

$$\gamma_{\zeta}^{q}(\mu, b) = \gamma_{\zeta}^{q pert}(\mu, b^{*}) - \frac{1}{2} c_{0}bb^{*}$$

$$b^{*}(b) = \frac{b}{\sqrt{1 + b^{2}/B_{NP}^{2}}}$$

- Describes data well at wide range of energy scales
- > But large uncertainties from experiment at high b
- Uncertainties from choice of functional form are *not* known

Scimemi & Vladimirov (JHEP 2019).

Example: global fits of the CS kernel

- ➤ Large non-perturbative contributions to TMDs
- \triangleright At low b_T , good fits; agree by construction
- > Larger uncertainty in non-perturbative region

Lattice QCD in a nutshell

General premise:

- Discretize QFT to regulate divergences
- Only known systematically improvable numerical approach

Figures: Argonne, D. Leinweber (QCD vacuum).

Want correlation functions:

$$\langle \mathcal{O} \rangle = \frac{\int [dU] e^{-S[U]} \mathcal{O}}{\int [dU] e^{-S[U]}}$$

Generate representative set of gauge configurations using Monte Carlo

Recipe for TMDs on the lattice

CS kernel from the lattice

--- CASCADE
--- SV19
--- MAP22
--- Pavia19
--- Pavia17

- SVZESETMC/PKU
- \diamond SVZ
- ▼ LPC20
- LPC22

- Dots = lattice data
- \triangleright Lines = global fits

Why lattice QCD?

Complementary to experiment & phenomenology:

- ➤ Good to check that QFT and experiment match
- Easier to access CS kernel, spin and flavor dependence than in experiment
- > Can improve global fit errors with lattice data
- \triangleright Calculations beyond $b_T > 1 \text{ GeV}^{-1}$

TMDs from field theory

Many schemes to define TMDs...

Modern Collins

$$\tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{uv}(\mu, \zeta, \epsilon) \lim_{y_{B} \to -\infty} \frac{\tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, \epsilon, y_{B}, xP^{+})}{\sqrt{\tilde{S}_{i/p}^{0}}} \qquad \text{Echevarria, Idilbi, Scimemi}$$

$$\tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{uv}^{i}(\mu, \zeta, \epsilon) \frac{\tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, \epsilon, \delta^{+}/(xP^{+}))}{\sqrt{\tilde{S}_{CJNR}^{0}}}$$

$$\tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{uv}^{i}(\mu, \zeta, \epsilon) \tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, \epsilon, \eta, xP^{+}) \sqrt{\tilde{S}_{CJNR}^{0}}(b_{T}, \epsilon, \eta)$$

$$\text{Becher & Neubert}$$

$$\lim_{\epsilon \to 0} \left[\tilde{f}_{i/p}^{0(u),BN}(x_{1}, \mathbf{b}_{T}, \epsilon, \alpha, x_{a}P_{A}^{+}) \tilde{f}_{j/p}^{0(u),BN}(x_{2}, \mathbf{b}_{T}, \epsilon, \alpha, x_{b}P_{B}^{-}) \right]$$

$$f_{i/p}(x_{a}, \mathbf{b}_{T}, \mu, x_{a}\tilde{\zeta}_{a}; \rho) = \lim_{\epsilon \to 0} Z_{uv}^{i}(\mu, \rho, \epsilon) \frac{\tilde{f}_{i/p}^{0(u)}(x_{a}, \mathbf{b}_{T}, \epsilon, v, xP^{+})}{\sqrt{\tilde{S}_{v\bar{v}}^{0}}(b_{T}, \epsilon, \rho)} + O(v^{+}, \bar{v}^{-}).$$

$$\text{Etc.}$$

First goal: sort this out.

Definition of TMDs in QFT

TMD matrix elements

Beam function:

Soft factor:

- Analog of parton in QCD: quark field attached to lightcone Wilson line
- Soft & collinear particle interactions:approximated by gauge links
- > Gauge invariance: need closed paths

New: unified notation

Can describe lattice & continuum off-lightcone schemes using the same generic beam function & soft factor

Each scheme is characterized by a distinct set of arguments & limits

Meaning of the correlators

Beam =
$$\left\langle P \left| \overline{q}_i \frac{\Gamma}{2} W_{\Rightarrow}^F(\boldsymbol{b}, \boldsymbol{\eta} \boldsymbol{\nu}, \boldsymbol{\delta}) q_i \right| P \right\rangle$$

Soft =
$$\frac{1}{d_R} \langle 0 | \text{Tr}[S_{\geqslant}^R(b, \eta \nu, \overline{\eta \nu})] | 0 \rangle$$

- \triangleright b^μ, ην^μ, δ^μ: parametrize Wilson lines
- **Length** η : finite (lattice) or infinite (physical TMD)
- $\delta^{\mu} = (0,0,0,\tilde{b}^z)$ for quasi = (0,0,0,0) for MHENS

Now, neat & tidy tables of schemes

	Collins scheme	Quasi-TMDs
TMD	$\lim_{\epsilon o 0} Z^{\kappa_i}_{ ext{UV}} \lim_{y_B o -\infty} rac{B_{i/h}}{\sqrt{S^{\kappa_i}}}$	$\lim_{a o 0} Z_{\mathrm{UV}}^{\kappa_i} rac{ ilde{B}_{i/h}}{\sqrt{S^{\kappa_i}}}$
Beam	$oxed{\Omega_{i/h} \left[b,P,\epsilon,-\infty n_B(y_B),b^-n_b ight] \stackrel{ ext{FT}}{\longrightarrow} B_{i/h}}$	$\Omega_{i/h}(ilde{b}, ilde{P},a, ilde{\eta}\hat{z}, ilde{b}^z\hat{z}) \stackrel{ ext{FT}}{\longrightarrow} ilde{B}_{i/h}$
Soft	$S^{\kappa_i}\left[b_{\perp},\epsilon,-\infty n_A(2y_n),-\infty n_B(2y_B) ight]$	$oxed{S^{\kappa_i}\left[b_{\perp},a,- ilde{\eta}rac{n_A(2y_n)}{ n_A(2y_n) },- ilde{\eta}rac{n_B(2y_B)}{ n_B(2y_B) } ight]}$
b^{μ}	$(0,b^-,b_\perp)$	$(0,b_T^x,b_T^y,\tilde{b}^z)$
v^{μ}	$(-e^{2y_B},1,0_\perp)$	(0,0,0,-1)
δ^{μ}	$(0,b^-,0_\perp)$	$(0,0,0,\tilde{b}^z)$
P^{μ}	$rac{m_h}{\sqrt{2}}(e^{y_P},e^{-y_P},0_\perp)$	$m_h(\cosh y_{ ilde{P}},0,0,\sinh y_{ ilde{P}})$

Ebert, Schindler, Stewart, and Zhao (2022). Schindler, Stewart, and Zhao (2022).

TMDs from the lattice?

Naïve lattice QCD:

- 1. Make TMD Wilson lines finite
- 2. Rotate to Euclidean space
- 3. Discretize path integral
- 4. Run Monte Carlo simulations
- 5. Extrapolate results back to continuum

Problem: Wilson lines are on the lightcone

Real Minkowski time variable → complex Euclidean action

Circumventing the sign problem

Trick: Project the desired physical Wilson line onto an equal-time slice

(Nontrivial! More later.)

- **Lattice TMD** is numerically tractable
- ➤ Want physical TMD & "lattice TMD" to be same in IR
- ➤ At worst, differ in UV & related by perturbative matching

Things are progressing rapidly...

TMD factorization

$$d\sigma = H \int f \otimes f$$

$$q_T \ll Q$$

$$f = Z_{UV} \frac{B}{\sqrt{S}}$$

$$\begin{array}{c} \text{SCET/QCD} \\ q_T \ll Q \end{array}$$

$$f = C \times \tilde{f}_{lattice}$$

LaMET
$$P^z \gg \Lambda_{QCD}$$

Proof of factorization

Connecting physical & lattice TMDs

Two main lattice approaches

MHENS scheme

- Pioneered lattice TMDs
- Focused on *x*-moments
- Renormalization, soft function, factorization not fully known

Today

Quasi-TMDs

- ➤ Newer; fewer results for proton
- > Focused on full TMD
- Renormalization, soft function have been proposed

Physical TMD schemes in this talk

	Collins	Large Rapidity (LR)
Limits	$\lim_{\epsilon \to 0} \lim_{y_B \to -\infty} Z_{UV}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\lim_{-y_B\gg 1}\lim_{\epsilon\to 0}Z_{UV}^R\frac{\Omega_{i/h}}{\sqrt{S^R}}$
Beam	$\Omega_{q/h}^{[\gamma^+]}[b, P, \epsilon, -\infty n_B(y_B), b^- n_b]$	$\Omega_{q/h}^{[\gamma^+]}[b, P, \epsilon, -\infty n_B(y_B), b^- n_b]$
Soft	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$

- Closely related to lattice TMDs
- \triangleright Regularize by taking off lightcone (characterize by rapidity y_B)
- ➤ Only differ by an order of limits

Definition of the schemes

Lattice

Factorization derivation steps

Lattice

Step 1: same at large rapidity $P^z >> \Lambda_{QCD}$

- > Expand & relate their variables
- \triangleright Take Wilson line length $|\eta| \to \infty$

Step 2: need a matching coefficient

- > Different UV renormalizations
- Nontrivial relationship

Continuum

Focus on beams: quasi-soft function is chosen to reproduce the Collins soft function

Step 1: Quasi to Large Rapidity

Compare Lorentz invariants formed from beam function arguments b^{μ} , P^{μ} , δ^{μ} , ηv^{μ}

Use boosts to show quasi = LR as $|\eta| \rightarrow \infty \& P^z >> \Lambda_{QCD}$

	Quasi	LR
b^2	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2$
$(\eta v)^2$	$-\tilde{\eta}^2$	$-2\eta^2 e^{2y_B}$
$P \cdot b$	$-m_h ilde{b}^z \sinh y_{ ilde{P}}$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$
$\frac{b\cdot (\eta v)}{\sqrt{ (\eta v)^2b^2 }}$	$rac{ ilde{b}^z}{\sqrt{(ilde{b}^z)^2+b_T^2}}\operatorname{sgn}(\eta)$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$
$\frac{P\cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh y_{ ilde{P}} \operatorname{sgn}(\eta)$	$\sinh(y_P\!-\!y_B)\operatorname{sgn}(\eta)$
$rac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$rac{b \cdot \delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$rac{P \cdot \delta}{P \cdot b}$	1	1
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1
P^2	m_h^2	m_h^2

Quasi to LR: same at Large Rapidity

			Quasi	LR
	12		$b_T^2-(ilde{b}^z)^2$	$-b_T^2$
Matching up Lorentz invariants in	mplies:		$- ilde{\eta}^2$	$-2\eta^2 e^{2y_B}$
$sinh(\tilde{y}_P)sgn(\eta) = sinh(y_P - y_P)$	$(B) \operatorname{sgn}(n)$	7)	$n_h ilde{b}^z \sinh y_{ ilde{P}}$	$rac{m_h}{\sqrt{2}}b^-e^{y_P}$
	$\left rac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2b^2 }} ight $	$\frac{1}{\sqrt{\tilde{l}}}$	$\frac{\tilde{b}^z}{\sum_{z \geq 1}^2 b^2} \operatorname{sgn}(\eta)$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$
	$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$		$ ext{nh} y_{ ilde{P}} ext{sgn}(\eta)$	$\sinh(y_P\!-\!y_B){ m sgn}(\eta)$

Need
$$y_P - y_B = y_{\tilde{P}}$$

$\sqrt{P^2 \eta v ^2}$		9B) 58H(1)
$\frac{b}{b^2}$	$\overline{b_T^2+(ilde{b}^z)^2}$	0
$rac{b\cdot\delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1
P^2	m_h^2	m_h^2

Quasi to LR: same at Large Rapidity

Previous slide:

$$y_B = y_{\tilde{P}} - y_P$$

Need:

Need:
$$-m_h \tilde{b}_z \sinh y_{\tilde{P}} = \frac{m_h}{\sqrt{2}} b^- e^{y_P}$$

Finite P · $b \& y_P \rightarrow \text{finite } b^-$

For quasi, $y_{\tilde{p}} \to \infty$, so $\tilde{b}^z \to 0$

	Quasi	LR
b^2	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2$
$(mn)^2$	$- ilde{n}^2$	$-2n^2e^{2y_B}$
$P \cdot b$	$-m_h ilde{b}^z \sinh y_{ ilde{P}}$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$
$\frac{\sqrt{ (\eta v)^2 b^2 }}{\sqrt{ (\eta v)^2 b^2 }}$	$\frac{\delta}{\sqrt{(\tilde{b}^z)^2 + b_T^2}}\operatorname{sgn}(\eta)$	$-rac{\delta}{\sqrt{2}}rac{c}{b_T}\operatorname{sgn}(\eta)$
$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh y_{ ilde{P}} \operatorname{sgn}(\eta)$	$\sinh(y_P\!-\!y_B)\operatorname{sgn}(\eta)$
$\frac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$rac{b \cdot \delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1
P^2	m_h^2	m_h^2

Quasi to LR: same at Large Rapidity

Need
$$\tilde{\eta} = \sqrt{2} e^{y_B} \eta$$

In $y_{\tilde{P}} \to -\infty$ limit, $b_T \gg \tilde{b}_z$

	Quasi	LR
L ²	ι^2 $(\tilde{\iota}^z)^2$	L ²
$(\eta v)^2$	$-\tilde{\eta}^2$	$-2\eta^2 e^{2y_B}$
$P \cdot b$	$-m_h b^z \sinh y_{ ilde{P}}$	$\frac{dh}{\sqrt{2}}b^-e^{y_P}$
$\frac{b\cdot (\eta v)}{\sqrt{ (\eta v)^2b^2 }}$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}}\operatorname{sgn}(\eta)$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$
$P \cdot (\eta v)$	$\sinh y_{ ilde{P}} \operatorname{sgn}(\eta)$	$\sinh(y_P\!-\!y_B)\operatorname{sgn}(\eta)$
$rac{\delta^2}{b^2}$	$rac{(ilde{b}^z)^2}{b_T^2+(ilde{b}^z)^2} \ ext{ } \$	0
$rac{b\cdot\delta}{b^2}$	$rac{(ilde{b}^z)^2}{b_T^2+(ilde{b}^z)^2}$	0
$\frac{P \cdot b}{P \cdot b}$	1	1
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1
P^2	m_h^2	m_h^2

Factorization derivation steps

Lattice

Step 1: Same at large rapidity

Step 2: need a matching coefficient

- > Different UV renormalizations
- > Nontrivial relationship

Continuum

Step 2: Large Rapidity to Collins

	Collins	Large Rapidity (LR)
Limits	$\lim_{\epsilon \to 0} \lim_{y_B \to -\infty} Z_{UV}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\lim_{-y_B\gg 1}\lim_{\epsilon\to 0}Z_{UV}^R\frac{\Omega_{i/h}}{\sqrt{S^R}}$
Beam	$\mathbf{\Omega}_{q/h}^{[\gamma^+]}[b, P, \epsilon, -\infty n_B(y_B), b^- n_b]$	$\mathbf{\Omega}_{q/h}^{[\gamma^+]}[b, P, \epsilon, -\infty n_B(y_B), b^- n_b]$
Soft	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$

- > Order of UV limits **cannot** affect IR physics
- ➤ But if non-commuting → perturbative matching coefficient
- ➤ Non-commutativity can arise from divergences

Intuition for rapidity divergences, which arise from factorization:

$$\underbrace{\int_{q_T}^{Q} \frac{\mathrm{d}k}{k}}_{\text{full}} = \lim_{\tau \to 0} \left[\underbrace{\int_{0}^{Q} \frac{\mathrm{d}k}{k} R_c(k,\tau)}_{\text{collinear}} + \underbrace{\int_{q_T}^{\infty} \frac{\mathrm{d}k}{k} R_s(k,\tau)}_{\text{soft}} \right] = \ln \frac{Q}{q_T}$$

Rapidity divergences and matching

Can see even at one loop. Contains terms like:

$$I = \iota^{\epsilon} \int \frac{d^d k}{(2\pi)^d} \frac{p^+ - k^+}{k^2 (p - k)^2} \left(e^{i\vec{k}_T \cdot \vec{b}_T} - 1 \right) \left[\frac{1}{n_B \cdot k + i\delta} + \frac{1}{n_B \cdot k - i\delta} \right]$$

Collins: directly carry out the integration

LR: integrate over $k^0 \& k^z$, get a log, then expand in $p'_z \gg k_T$ before integrating over k_T :

$$I = \frac{i}{4} \iota^{\epsilon} \int \frac{d^{d-2}k_T}{(2\pi)^{d-1}} \left(e^{i\vec{k}_T \cdot \vec{b}_T} - 1 \right) \left[\left(\frac{2}{k_T^2} + \frac{1}{p_z'^2} \right) \frac{\ln\left(\frac{k_T^2 + 2p_z' \sqrt{k_T^2 + p_z'^2} + 2p_z'^2}{k_T^2}\right)}{\sqrt{1 + k_T^2/p_z'^2}} - \frac{4}{k_T^2} \right]$$

Yield different values:

Collins =
$$\frac{i}{(4\pi^2)} \left[\frac{1}{\epsilon} - \frac{1}{2} \ln^2 \frac{(4p'^z b_T)^2}{b_0^2} + \ln \frac{(4p'^z b_T)^2}{b_0} + \ln (\frac{b_T^2 \mu^2}{b_0^2}) - 2 \right]$$

$$\mathbf{LR} = \frac{i}{(4\pi)^2} \left[\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \left(2 + \ln \frac{\mu^2}{4p_z'^2} \right) - \frac{1}{2} \ln^2 \left(\frac{b_T^2 \mu^2}{b_0^2} \right) + \ln \left(\frac{b_T^2 \mu^2}{b_0^2} \right) \left(2 + \ln \frac{\mu^2}{4p_z'^2} \right) - \frac{\pi^2}{12} \right]$$

$$f_{LR} = C_i(x\tilde{P}^z, \mu) f_{Collins}$$

Schindler, Stewart, and Zhao (2022).

Factorization derivation steps

Lattice

Continuum

Step 1: Same at large rapidity

Step 2: Pick up a matching coefficient

Step 3: Combine to get full factorization

Lattice-to-physical factorization

Quasi-TMD (lattice)

Matching

RGE for ζ

Collins TMD (continuum)

$$\widetilde{\boldsymbol{f}}_{\boldsymbol{i}/H}^{[s]}\left(\boldsymbol{x}, \overrightarrow{\boldsymbol{b}}_{T}, \boldsymbol{\mu}, \widetilde{\boldsymbol{\zeta}}, \mathbf{x}\widetilde{\boldsymbol{P}}^{z}\right) = \boldsymbol{C}_{\boldsymbol{i}}\left(\boldsymbol{x}\widetilde{\boldsymbol{P}}^{z}, \boldsymbol{\mu}\right) \exp \left[\frac{1}{2}\boldsymbol{\gamma}_{\boldsymbol{\zeta}}^{\boldsymbol{i}}(\boldsymbol{\mu}, \boldsymbol{b}_{T}) \ln \frac{\widetilde{\boldsymbol{\zeta}}}{\boldsymbol{\zeta}}\right] \boldsymbol{f}_{\boldsymbol{i}/H}^{[s]}\left(\boldsymbol{x}, \overrightarrow{\boldsymbol{b}}_{T}, \boldsymbol{\mu}, \boldsymbol{\zeta}\right)$$

$$\tilde{\zeta} = \left(2x\tilde{P}^z\right)^2 e^{2(y_B - y_n)}$$

Power corrections

$$\times \left\{ 1 + \mathcal{O}\left[\frac{1}{\left(x\tilde{P}^{z}b_{T}\right)^{2}}, \frac{\Lambda_{QCD}^{2}}{\left(x\tilde{P}^{z}\right)^{2}}\right] \right\}$$

Note that this formula connects physical continuum TMDs to the renormalized *continuum limit* of lattice calculations.

What is the matching coefficient?

$$\tilde{f}_{i/H}^{[s]}\left(x,\vec{b}_{T},\mu,\tilde{\zeta},x\tilde{P}^{z}\right) = C_{i}\left(x\tilde{P}^{z},\mu\right) \exp\left[\frac{\gamma_{\zeta}^{l}}{2}\ln\frac{\tilde{\zeta}}{\zeta}\right] f_{i/H}^{[s]}\left(x,\vec{b}_{T},\mu,\zeta\right)$$

Convenient properties:

- > Independent of spin
- No quark-gluon or flavor mixing
- Known at one-loop & logarithmic terms

NLO matching coefficients

Recall: only rapidity divergences contribute! For the gluon:

Casimir scaling for quarks and gluons

$$C_i(\mu, x\tilde{P}^z) = 1 + \frac{\alpha_s C_R}{4\pi} \left[-\ln^2 \frac{(2xP^z)^2}{\mu^2} + \frac{2\ln(2xP^z)^2}{\mu^2} - 4 + \frac{\pi^2}{6} \right] + O(\alpha_s^2)$$

Schindler, Stewart, and Zhao, 2205.12369.

Note that Casimir scaling only holds if one chooses $F^{+\rho}$ rather than $F^{0\rho}$ or $F^{3\rho}$ (Zhang et al., 2209.05443)

NnLL terms

RG evolution:

$$\frac{d}{d\ln(2x\tilde{P}^z)}\ln C_q(x\tilde{P}^z,\mu) = \gamma_C^q(2x\tilde{P}^z,\mu)$$

Turn the crank, get matching coefficient:

$$C_{i}(x\tilde{P}^{z},\mu) = C_{i}[\alpha_{s}(\mu)] \exp\left[\int_{\alpha_{s}(\mu)}^{\alpha_{s}(2x\tilde{P}^{z})} \frac{d\alpha}{\beta[\alpha]} \int_{\alpha}^{\alpha_{s}(\mu)} \frac{d\alpha'}{\beta[\alpha']} (2\Gamma_{cusp}^{i}[\alpha'] + \gamma_{c}^{i}[\alpha])\right]$$

→ NⁿLL straightforward to compute from higher-order anomalous dimensions.

Example, NLL:

$$C_{q}(x\tilde{P}^{z},\mu)^{NLL} = -2K_{\Gamma}^{q}(2x\tilde{P}^{z},\mu) - K_{\gamma}^{q}(2x\tilde{P}^{z},\mu)$$

$$K_{\Gamma}^{q}(\mu_{0},\mu) = -\frac{\Gamma_{0}^{q}}{4\beta_{0}^{2}} \left\{ \frac{4\pi}{\alpha_{s}(\mu_{0})} \left(1 - \frac{1}{r} - \ln r \right) + \left(\frac{\Gamma_{1}^{q}}{\Gamma_{0}^{q}} - \frac{\beta_{1}}{\beta_{0}} \right) (1 - r + \ln r) + \frac{\beta_{1}}{2\beta_{0}} \ln^{2} r \right\} \qquad K_{\gamma}^{q}(\mu_{0},\mu) = -\frac{\gamma_{C0}^{q}}{2\beta_{0}} \ln r$$

Ebert, **Schindler**, Stewart, and Zhao (2022).

Spin independence

Beam =
$$\left\langle P \left| \overline{q}_i \frac{\Gamma}{2} W_{\Xi}^F(b, \eta \nu, \delta) q_i \right| P \right\rangle$$

$$\Gamma \in \{ \overline{\chi}, \overline{\chi} \gamma_5, i \sigma^{\alpha -} \gamma_5 \}$$

Spin structure example:

$$f_{q/h_S}^{[ec{n}]}(x,ec{q}_T) = f_1(x,q_T) - rac{\epsilon_{
ho\sigma}q_\perp^
ho S_\perp^\sigma}{M} f_{1T}^\perp(x,q_T)$$

		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	f_1 = $lacktriangle$ Unpolarized		$h_1^{\perp} = \underbrace{\dagger} - \underbrace{\bullet}$ Boer-Mulders
	L		$g_1 = -$ Helicity	$h_{1L}^{\perp} = \longrightarrow - \longrightarrow$ Worm-gear
	т	$f_{1T}^{\perp} = \bullet - \bullet$ Sivers	$g_{1T}^{\perp} = -$ Worm-gear	$h_1 = 1 - 1$ Transversity $h_{1T}^{\perp} = 1 - 1$ Pretzelosity

Ebert, **Schindler**, Stewart, and Zhao (2020).

No flavor or quark-gluon mixing

The diagrams above are the same for quasi, LR, and Collins:

- > Can see directly from factorization derivation
- \triangleright So, only two coefficients $C_q \& C_g$
- > Can do gluon TMDs!

Status of the lattice

Lattice targets

CS kernel from beam ratios

From the factorization formula:

$$\gamma_{\zeta}^{q}(\mu, b_{T}) = \frac{1}{\ln P_{1}^{z}/P_{2}^{z}} \ln \frac{C^{TMD}(\mu, xP_{2}^{z}) \int db^{z} e^{ib^{z}xP_{1}^{z}} \tilde{Z}_{q}^{\prime} \tilde{Z}_{uv}^{q} \tilde{B}_{q}(b^{z}, \vec{b}_{T}, a, L, P_{1}^{z})}{C^{TMD}(\mu, xP_{1}^{z}) \int db^{z} e^{ib^{z}xP_{2}^{z}} \tilde{Z}_{q}^{\prime} \tilde{Z}_{uv}^{q} \tilde{B}_{q}(b^{z}, \vec{b}_{T}, a, L, P_{2}^{z})}$$

Dependent on few parameters compared to RHS!

- ➤ No soft function needed
- \triangleright Can set up \tilde{Z}_{uv}^q to remove power law divergences in numerator and denominator

CS kernel lattice results

Recent first lattice results!

However, large systematic uncertainties.

Soft function on the lattice

- > Soft function also runs into lightcone Wilson staple issues
- Can express soft as ratio of meson form factor with convolution of two meson wavefunctions

Ji, Liu, Liu (NPB 2020). LPC collaboration (PRL 2020). Li et al. (PRL 2022).

TMD ratios from beam ratios

Ratios of different TMD spins, flavors, or hadrons can be calculated directly from lattice beam functions:

$$\lim_{\widetilde{\eta} \to \infty} \frac{f_{q_i/h}^{\left[\widetilde{\Gamma}_1\right]}}{f_{q_j/h'}^{\left[\widetilde{\Gamma}_2\right]}} = \lim_{\widetilde{\eta} \to \infty} \frac{\widetilde{B}_{q_i/h}^{\left[\widetilde{\Gamma}_1\right]}}{\widetilde{B}_{q_j/h'}^{\left[\widetilde{\Gamma}_2\right]}}$$

This follows from the quasi-to-Collins factorization formulas:

$$C_{i} \exp \left[\frac{1}{2} \gamma_{\zeta}^{i} \ln \frac{\tilde{\zeta}}{\zeta}\right] f_{q_{i}/H}^{[\Gamma]} = \tilde{f}_{q_{i}/H}^{[\Gamma]} = \lim Z_{UV} \frac{\tilde{B}_{q_{i}/H}^{[\Gamma]}}{\sqrt{S^{R}}}$$

Lattice-to-continuum TMD factorization

Factorization of a lattice TMD into matrix elements

MHENS on the lattice

First lattice studies!

- Suggested ratio method
- Focus on *x*-integrated TMDs, so renormalization is less of a problem

Caveat:

- > So far, no matching corrections
- ➤ Procedure to carry out simulations with matching, x-dependence, soft functions not yet known

MHENS lattice results: Sivers sign change

- > Sivers has different signs in DY & SIDIS
- \triangleright Can verify on the lattice using ratios at various b_T values

Yoon, Engelhardt, Gupta, et al. (PRD 2017).

MHENS lattice results: Boer-Mulders shift

➤ Pion u-quark Boer-Mulders shift in SIDIS

$$m_N \frac{\tilde{h}_1^{\perp}}{\tilde{f}_1}$$

Caveat: nontrivial MHENS-to-Collins connection

For the case $P \cdot b = 0$ (focus of all studies so far) MHENS and quasi have an equivalent renormalization, soft function, etc.

$$\int dx \ \tilde{f}_{q_i/h}^{[\Gamma]}(x, \vec{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z, \tilde{\eta}) = f_{q_i/h}^{[\Gamma]\text{MHENS}}(b^z = 0, \vec{b}_T, \mu, \tilde{P}^z, y_n - y_B, \tilde{\eta})$$

For the case $P \cdot b \neq 0$:

- \triangleright Non-trivial cusp angles γ , even as $\eta \to \infty$
- ➤ b^z-dependent Wilson length
- Implies renormalization, soft are b^z -dependent and won't cancel out in ratios at finite η

Status of the lattice

CS kernel	
Spin-dependent TMD ratios	
3D structure ratios	
Flavor ratios	
Normalized TMD	×
Proton-pion TMD ratios	X
Gluon TMDs	×
• • •	•••

Conclusion

Implications of factorization

Quasi-to-Collins matching coefficient: quite convenient...

- No spin dependence
- ➤ No quark-gluon or flavor mixing (simpler to get gluon TMDs!)
- ➤ NLO & NⁿLL results: generalized Casimir scaling
- Same as LR-to-Collins coefficients, so can compute as the rapidity-divergent diagrams in different orders of limits

Implies validity of taking quasi-TMD ratios...

- > Pz ratios for CS kernel
- ➤ Beam hadron, flavor, spin ratios for full TMD ratios

Our contributions

1. New unified TMD notation

- 2. New scheme (LR)
- 3. Lattice-to-physical TMD factorization: convenient!

Quasi-TMDs have a straightforward, rigorous connection to physical TMDs