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Motivation

2030s1960s

SLAC ➤ DESY  ➤ CERN  ➤ JLab  ➤ EIC  ➤ …

Soon, we’ll have even higher precision 
experimental data about the proton’s 

full 3D internal structure…

1D PDFs ➤ 3D TMDs, GPDs  ➤ 5D GTMDs? ➤ … 

Figure: CERN

It’s crucial to develop a corresponding 
first-principles understanding! 
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3Roadmap for today’s lecture 3

Figure: I. Stewart

1. Background

2. Factorization

3. Implications



PDFs 4

Figure: PDG 

𝑒!

𝛾

Parton Distribution Functions: 1D momentum distribution of 
quarks and gluons inside the proton

Ø Universal factors in processes 

Ø SLAC-MIT experiment (1969): deep inelastic scattering



Transverse momentum dependent PDFs: full 3D picture

Ø Key factor in SIDIS, Drell-Yan, W/Z production, Higgs, … 

Ø Challenge: important non-perturbative contributions even at
perturbative scales

TMDs 5



𝒅𝝈𝑫𝒀

𝒅𝑸𝟐𝒅𝒀 𝒅𝟐𝒒𝑻
= 𝝈𝟎'

(, *

𝑯𝒊𝒋 𝑸,𝝁

× ,
𝑑-𝑏.
2𝜋 - 𝑒

(/!⋅1!𝒇𝒊/𝒉𝟏 𝒙𝟏, 𝒃𝑻, 𝝁, 𝜻𝟏 𝒇𝒋/𝒉𝟐 𝒙𝟐, 𝒃𝑻, 𝝁, 𝜻𝟐

TMDs in cross-sections

TMDs

Virtual correctionsTree-level

6

Collins, Foundations of Perturbative QCD.

Drell-Yan process:

Collins-Soper (CS) scale:
𝜁 = 2 𝑥𝑃"𝑒!#! $



Evolution of TMD scales 7

Collins & Soper (1982, 1983). Collins, Soper, & Sterman (1985). 

𝒇𝒒 𝒙, 𝒃𝑻, 𝝁, 𝜻 = exp +
𝝁𝟎

𝝁𝑑𝜇$

𝜇$
𝛾%
& 𝜇$, 𝜁' exp

1
2
𝜸𝜻
𝒒 𝜇, 𝑏) ln

𝜻
𝜻𝟎

𝒇𝒒(𝒙, 𝒃𝑻, 𝝁𝟎, 𝜻𝟎)

Possible to relate TMDs at different scales 𝝁, 𝜻 & 𝝁𝟎, 𝜻𝟎 :

Experiment 𝜇, 𝜁 ~ 𝑄
Lattice 𝜇, 𝜁 ~ 1 GeV

CS kernel



TMDs from experiment 8

Figures: Scimemi & Vladimirov (JHEP 2019). EIC Yellow Report (2021). 

Data used in Scimemi & 
Vladimirov global fit Projected EIC data



Global fits to experiment 9

𝑓8 𝑥, 𝑏9 , 𝜇, 𝜁 = 𝒇𝒊𝑷[𝒙, 𝒃∗ 𝒃𝑻 , 𝝁, 𝜻] 𝒇𝑵𝑷(𝒙, 𝒃𝑻, 𝜻)

Split TMD into two pieces:

Perturbative piece: 
Ø Expand in 𝛼?(𝑏9@A) about collinear PDF
Ø Known to three loops!

Non-perturbative piece: 
Ø Construct model, fit to data

Ebert, Mistlberger, Vita (JHEP 2020). 
Luo, Yang, Zhu, Zhu (JHEP 2021).  

e.g., JAM collaboration



Example non-perturbative model 10

Ø Describes data well at wide 
range of energy scales

Ø But large uncertainties from 
experiment at high b

Ø Uncertainties from choice of 
functional form are not known

𝒇𝑵𝑷 𝒙, 𝒃 = exp −
𝝀𝟏 1 − 𝑥 + 𝝀𝟐𝑥 + 𝑥 1 − 𝑥 𝝀𝟓

1 + 𝝀𝟑𝑥𝝀𝟒𝑏)
𝑏)

𝑫𝑵𝑷 𝒙, 𝒃 = exp −
𝜼𝟏𝑧 + 𝜼𝟐 1 − 𝑧
1 + 𝜼𝟑 𝑏/𝑧 )

𝑏)

𝑧)
1 +

𝜼𝟒𝑏)

𝑧)

𝜸𝜻
𝒒 𝝁, 𝒃 = 𝛾-

. /012 𝜇, 𝑏∗ −
1
2 𝒄𝟎𝑏𝑏

∗

𝒃∗ 𝒃 =
𝑏

1 + 𝑏)/𝑩𝑵𝑷𝟐

Example: 11-parameter model

TMD-FF

CS kernelTMD-PDF

Scimemi & Vladimirov (JHEP 2019). 



Example: global fits of the CS kernel 11

Figure: MAP collaboration, 
Bacchetta et al. (2022).

Ø Large non-perturbative contributions to TMDs

Ø At low 𝑏., good fits; agree by construction

Ø Larger uncertainty in non-perturbative region



12Lattice QCD in a nutshell 12

Figures: Argonne, D. Leinweber (QCD vacuum). 

General premise: 

Ø Discretize QFT to regulate 
divergences

Ø Only known systematically 
improvable numerical approach

𝒪 =
∫ 𝑑𝑈 𝑒:;[=]𝒪
∫ 𝑑𝑈 𝑒:;[=]

Generate representative set of gauge 
configurations using Monte Carlo

Want correlation functions: 



13Recipe for TMDs on the lattice 13

TMD in cross-sections

Lattice-calculable TMD

Project to equal-time slice & discretize

Raw lattice TMD data

Factorization 
formula Run simulations

Continuum extrapolation 
of lattice TMD

Limit of zero lattice spacing, ∞ size



14CS kernel from the lattice 14

Martinez & Vladimirov (2022).

Ø Dots = lattice data

Ø Lines = global fits



15Why lattice QCD? 15

Complementary to experiment & phenomenology: 

Ø Good to check that QFT and experiment match

Ø Easier to access CS kernel, spin and flavor 
dependence than in experiment

Ø Can improve global fit errors with lattice data

Ø Calculations beyond 𝑏. > 1 GeV:?



TMDs from field theory



Many schemes to define TMDs… 

Modern Collins

Echevarria, Idilbi, Scimemi 

Chiu, Jain, Neill, Rothstein

Becher & Neubert

Ji, Ma, Yuan

Etc!

17

First goal: sort this out. 



Definition of TMDs in QFT 18

𝒇 = lim 𝒁𝑼𝑽
𝑩𝒒𝒊/𝑯

𝜞

𝑺𝑹lightcone,
renormalization

Beam function

Soft factorScheme-dependent 
renormalization

TMD



19TMD matrix elements 19

Soft factor:

Beam function:

Ø Analog of parton in QCD: 
quark field attached to 
lightcone Wilson line

Ø Soft & collinear particle 
interactions:
approximated by gauge links 

Ø Gauge invariance:
need closed paths



20New: unified notation 20

𝑓 = lim 𝑍CD
𝑩𝒒𝒊/𝑯

𝜞 𝒃, 𝑷, 𝝐, 𝜼𝝂, 𝜹

𝑺𝑹 𝒃, 𝝐, 𝜼𝝂, =𝜼>𝝂lightcone,
renormalization

Can describe lattice & continuum off-lightcone schemes 
using the same generic beam function & soft factor

Quasi-TMD

Collins TMD

JMY scheme

Etc.

Each scheme is characterized by a distinct set of arguments & limits

Ebert, Schindler, Stewart, and Zhao (2022). 



21

𝐁𝐞𝐚𝐦 = 𝑃 '𝑞:
𝛤
2 𝑾

𝑭 𝒃, 𝜼𝝂, 𝜹 𝑞: 𝑃

Meaning of the correlators 21

𝐒𝐨𝐟𝐭 =
1
𝑑<

0 Tr 𝑺𝑹 𝒃, 𝜼𝝂, ;𝜼;𝝂 0

Ø bμ, ηvμ, δμ:
parametrize Wilson lines

Ø Length 𝜂: finite (lattice) or 
infinite (physical TMD)

Ø 𝜹𝝁 = (0,0,0, G𝑏@) for quasi
= (0,0,0,0) for MHENS

Ebert, Schindler, Stewart, and Zhao (2022). 



22Now, neat & tidy tables of schemes 22

Ebert, Schindler, Stewart, and Zhao (2022). Schindler, Stewart, and Zhao (2022). 

Collins scheme Quasi-TMDs

TMD

Beam

Soft

𝑏%

𝑣%

𝛿%

𝑃%



23TMDs from the lattice? 23

Naïve lattice QCD:

1. Make TMD Wilson lines finite

2. Rotate to Euclidean space

3. Discretize path integral

4. Run Monte Carlo simulations

5. Extrapolate results back to continuum

Problem: Wilson lines are on the lightcone

Real Minkowski time variable → complex Euclidean action



24Circumventing the sign problem 24

Trick: Project the desired 
physical Wilson line onto 
an equal-time slice

Ø Lattice TMD is numerically tractable

Ø Want physical TMD & “lattice TMD” to be same in IR

Ø At worst, differ in UV & related by perturbative matching

(Nontrivial! More later.)



25Things are progressing rapidly… 25

First lattice TMD (MHENS scheme) proposed
Musch, Hägler, Engelhardt, Negele, and Schäfer

New lattice TMD (quasi-TMD) proposed, 1-loop studies
Xiangdong Ji

Lattice calculations of MHENS beam functions

Quasi-TMD theory put on firmer footing
Ebert, Stewart, and Zhao

Proposal for lattice calculation of quasi-soft function
Ji, Liu, and Liu

First lattice results for CS kernel & quasi-soft function
MIT, LPC, ETMC, and Regensburg lattice groups

MHENS and collaborators

2013

2014

2018

2019

2022 Factorization connecting quasi & physical TMDs
Ebert, Schindler, Stewart, and Zhao



26TMD factorization 26

Drell-Yan 
cross-section

𝒅𝝈 = 𝑯%𝒇⊗ 𝒇

Formal 
definition 𝒇 = 𝒁𝑼𝑽

𝑩
𝑺

On the lattice 𝒇 = 𝑪 × -𝒇𝒍𝒂𝒕𝒕𝒊𝒄𝒆

Collins, Foundations of Perturbative QCD. LaMET: Ji (2014). 

𝑞9 ≪ 𝑄

SCET/QCD
𝑞9 ≪ 𝑄

LaMET
𝑃J ≫ ΛKLM

Goal



Proof of factorization



28Connecting physical & lattice TMDs 28

Ebert, Schindler, Stewart, and Zhao (2022). 

New!



29Two main lattice approaches 29

MHENS scheme Quasi-TMDs

Ø Pioneered lattice TMDs

Ø Focused on x-moments

Ø Renormalization, soft function, 
factorization not fully known

Ø Newer; fewer results for proton

Ø Focused on full TMD

Ø Renormalization, soft function 
have been proposed

Musch, Hägler, Engelhardt, Negele, Schäfer (2013). Ji (2014).

Today



Physical TMD schemes in this talk 30

ØClosely related to lattice TMDs

ØRegularize by taking off lightcone (characterize by rapidity yB)

ØOnly differ by an order of limits

Collins Large Rapidity (LR)

Limits 𝐥𝐢𝐦
𝝐→𝟎

𝐥𝐢𝐦
𝒚𝑩→!*

𝑍+,-
Ω./0
𝑆-

𝐥𝐢𝐦
!𝒚𝑩≫𝟏

𝐥𝐢𝐦
𝝐→𝟎

𝑍+,-
Ω./0
𝑆-

Beam 𝛀𝒒/𝒉
𝜸# [𝑏, 𝑃, 𝜖, −∞𝑛6 𝑦6 , 𝑏!𝑛7] 𝛀𝒒/𝒉

𝜸# [𝑏, 𝑃, 𝜖, −∞𝑛6 𝑦6 , 𝑏!𝑛7]

Soft 𝑺𝑹[𝑏9, 𝜖, −∞𝑛: 𝑦: , −∞𝑛6 𝑦6 ] 𝑺𝑹[𝑏9, 𝜖, −∞𝑛: 𝑦: , −∞𝑛6 𝑦6 ]



31Definition of the schemes 31



32Factorization derivation steps 32

Step 1: same at large rapidity Pz >> ΛQCD
Ø Expand & relate their variables

Ø Take Wilson line length |η| → ∞

Step 2: need a matching coefficient

Ø Different UV renormalizations

Ø Nontrivial relationship

Focus on beams: quasi-soft function is chosen to reproduce the Collins soft function



33Step 1: Quasi to Large Rapidity 33

Compare Lorentz invariants 
formed from beam function 

arguments bμ, Pμ, 𝛿μ, ηvμ

Use boosts to show quasi = LR 
as |η| → ∞ & Pz >> ΛQCD



Quasi to LR: same at Large Rapidity

Matching up Lorentz invariants implies:

sinh O𝑦Q sgn(𝜂) = sinh 𝑦Q − 𝑦R sgn 𝜂

Need 𝑦Q − 𝑦R = 𝑦 SQ

34



Quasi to LR: same at Large Rapidity

Need:
−𝑚T G𝑏@ sinh 𝑦 SQ =

𝑚T

2
𝑏:𝑒U$

Previous slide:
𝑦R = 𝑦 SQ − 𝑦Q

Finite P ⋅ 𝑏 & 𝑦Q → Winite 𝑏:

For quasi, 𝑦 SQ → ∞, so G𝑏@ → 0

35



Quasi to LR: same at Large Rapidity

In 𝑦 SQ → −∞ limit, 𝑏. ≫ G𝑏@

Need  O𝜂 = 2 𝑒U%𝜂

36



37Factorization derivation steps 37

Step 2: need a matching coefficient

Ø Different UV renormalizations

Ø Nontrivial relationship

Step 1: Same at large rapidity ✅



38Step 2: Large Rapidity to Collins 38

Ø Order of UV limits cannot affect IR physics

Ø But if non-commuting → perturbative matching coefficient

Ø Non-commutativity can arise from divergences

Collins Large Rapidity (LR)

Limits 𝐥𝐢𝐦
𝝐→𝟎

𝐥𝐢𝐦
𝒚𝑩→78

𝑍9:;
Ω</>
𝑆;

𝐥𝐢𝐦
7𝒚𝑩≫𝟏

𝐥𝐢𝐦
𝝐→𝟎

𝑍9:;
Ω</>
𝑆;

Beam 𝛀𝒒/𝒉
𝜸# [𝑏, 𝑃, 𝜖, −∞𝑛B 𝑦B , 𝑏7𝑛C] 𝛀𝒒/𝒉

𝜸# [𝑏, 𝑃, 𝜖, −∞𝑛B 𝑦B , 𝑏7𝑛C]

Soft 𝑺𝑹[𝑏E, 𝜖, −∞𝑛F 𝑦F , −∞𝑛B 𝑦B ] 𝑺𝑹[𝑏E, 𝜖, −∞𝑛F 𝑦F , −∞𝑛B 𝑦B ]

Intuition for rapidity divergences, 
which arise from factorization: 



39Rapidity divergences and matching 39

Can see even at one loop. Contains terms like:

Collins: directly carry out the integration

LR: integrate over k0 & kz , get a log, then
expand in 𝑝@V ≫ 𝑘. before integrating over kT :

Schindler, Stewart, and Zhao (2022). 

Yield different values:
𝒇𝑳𝑹 = 𝐶( 𝑥 G𝑃@, 𝜇 𝒇𝑪𝒐𝒍𝒍𝒊𝒏𝒔Collins

LR



40Factorization derivation steps 40

Step 1: Same at large rapidity

Step 2: Pick up a matching coefficient

✅

✅

Step 3: Combine to get full factorization



41Lattice-to-physical factorization 41

Quasi-TMD 
(lattice)

Collins TMD
(continuum)RGE for ζ Matching

<𝒇𝒊/𝑯
𝒔 𝒙, 𝒃𝑻, 𝝁, <𝜻, 𝐱B𝑷𝒛 = 𝑪𝒊 𝒙B𝑷𝒛, 𝝁 exp

1
2
𝜸𝜻𝒊 𝜇, 𝑏S ln

M𝜁
𝜁
𝒇𝒊/𝑯
𝒔 𝒙, 𝒃𝑻, 𝝁, 𝜻

× 1 + 𝒪
1

𝑥 V𝑃G𝑏H
) ,

ΛIJK)

𝑥 V𝑃G )
𝜁 = 2𝑥 S𝑃; $𝑒$(#$!#!)

Power corrections

Note that this formula connects physical continuum TMDs 
to the renormalized continuum limit of lattice calculations.

Ebert, Schindler, Stewart, and Zhao (2022). 



42What is the matching coefficient? 42

𝑓(/_
` 𝑥, 𝑏., 𝜇, 𝜁, x G𝑃@ = 𝑪𝒊 𝒙d𝑷𝒛, 𝝁 exp

𝛾b
(

2
ln
𝜁
𝜁
𝑓(/_
` 𝑥, 𝑏., 𝜇, 𝜁

Convenient properties:   

Ø Independent of spin

Ø No quark-gluon or flavor mixing

Ø Known at one-loop & logarithmic terms



43NLO matching coefficients 43

Recall: only rapidity divergences contribute! For the gluon:

Note that Casimir scaling only holds if one chooses 𝐹LM rather than 𝐹NM or 𝐹OM (Zhang et al., 2209.05443)

Casimir scaling for quarks and gluons

𝐶+ 𝜇, 𝑥 P𝑃, = 1 +
𝛼-𝑪𝑹
4𝜋

− ln/
2𝑥𝑃, /

𝜇/
+
2 ln 2𝑥𝑃, /

𝜇/
− 4 +

𝜋/

6
+ 𝑂 𝛼-/

Schindler, Stewart, and Zhao, 2205.12369.



44NnLL terms 44

𝑪𝒒 𝒙Z𝑷𝒛, 𝝁
𝑵𝑳𝑳 = −2K3

& 2𝑥 P𝑃,, 𝜇 − 𝐾4
& 2𝑥 P𝑃,, 𝜇

𝐶+ 𝑥 P𝑃,, 𝜇 = 𝐶+ 𝛼- 𝜇 exp +
5P %

5P /6 78Q 𝑑𝛼
𝛽 𝛼

+
5

5P % 𝑑𝛼′
𝛽 𝛼$ (2𝚪𝒄𝒖𝒔𝒑

𝒊 𝜶$ + 𝜸𝑪𝒊 𝜶 )

𝑑
𝑑 ln(2𝑥 S𝑃;)

ln 𝑪𝒒 𝒙i𝑷𝒛, 𝝁 = 𝛾?
@ 2𝑥 S𝑃; , 𝜇

Turn the crank, get matching coefficient:

RG evolution:

Example, NLL: 

Ebert, Schindler, Stewart, and Zhao (2022). 

→ NnLL straightforward to compute from higher-order anomalous dimensions.



45Spin independence 45

Beam = 𝑃 '𝑞:
𝜞
𝟐 𝑊

Y 𝑏, 𝜂𝜈, 𝛿 𝑞: 𝑃

𝚪 ∈ {'𝑛, '𝑛𝛾Z, 𝑖𝜎[\𝛾Z}

Spin structure example:

Ebert, Schindler, Stewart, and Zhao (2020). 



46No flavor or quark-gluon mixing 46

The diagrams above are the same for quasi, LR, and Collins: 
Ø Can see directly from factorization derivation
Ø So, only two coefficients 𝑪𝒒 & 𝑪𝒈
Ø Can do gluon TMDs!

Ebert, Schindler, Stewart, and Zhao (2022). 



Status of the lattice



48Lattice targets 48

𝒅𝝈 = 𝑯%𝒇⊗ 𝒇

𝒇 = 𝒁𝑼𝑽
𝑩
𝑺

𝒇 = 𝑪 × -𝒇𝒍𝒂𝒕𝒕𝒊𝒄𝒆

Beam functions
(& ratios)

Soft factor
(indirect)

CS kernel
(𝜻 evolution)

Full TMDs
(hadrons,
flavors,
spins)



49CS kernel from beam ratios 49

𝜸𝜻
𝒒 𝝁, 𝒃𝑻 =

1
ln𝑃?,/𝑃/,

ln
𝐶)@A 𝜇, 𝑥𝑃/, ∫ 𝑑𝑏,𝑒+B

Q68RQ P𝑍&$ P𝑍CD
& P𝐵&(𝑏,, 𝑏), 𝑎, 𝐿, 𝑃?,)

𝐶)@A 𝜇, 𝑥𝑃?, ∫ 𝑑𝑏,𝑒+B
Q68SQ P𝑍&$ P𝑍CD

& P𝐵&(𝑏,, 𝑏), 𝑎, 𝐿, 𝑃/,)

Ø No soft function needed

Ø Can set up G𝑍mn
/ to remove power law divergences in 

numerator and denominator

Dependent on few parameters 
compared to RHS!

Ebert, Stewart, and Zhao (PRD 2019).  

From the factorization formula: 



50CS kernel lattice results 50

Shanahan, Wagman, Zhao (PRD 2021). 

Recent first lattice results! 

However, large systematic uncertainties. 



51Soft function on the lattice 51

Ji, Liu, Liu (NPB 2020). LPC collaboration (PRL 2020). Li et al. (PRL 2022).

Ø Soft function also runs into lightcone Wilson staple issues

Ø Can express soft as ratio of meson form factor with 
convolution of two meson wavefunctions 



52TMD ratios from beam ratios 52

lim
hi→k

𝒇𝒒𝒊/𝒉
Z𝜞𝟏

𝒇𝒒𝒋/𝒉$
Z𝜞𝟐

= lim
hi→k

F𝑩𝒒𝒊/𝒉
Z𝚪𝟏

F𝑩𝒒𝒋/𝒉$
Z𝜞𝟐

𝑪𝒊 𝐞𝐱𝐩
𝟏
𝟐
𝜸𝜻𝒊 𝐥𝐧

O𝜻
𝜻
𝒇𝒒𝒊/𝑯
𝜞 = O𝒇𝒒𝒊/𝑯

𝜞 = lim𝒁𝑼𝑽
F𝑩𝒒𝒊/𝑯
𝜞

𝑺𝑹

Factorization of a lattice TMD 
into matrix elements

Lattice-to-continuum TMD 
factorization

Ratios of different TMD spins, flavors, or hadrons can be calculated 
directly from lattice beam functions:

This follows from the quasi-to-Collins factorization formulas:



53MHENS on the lattice 53

First lattice studies! 

Ø Suggested ratio method

Ø Focus on x-integrated TMDs, so renormalization is 
less of a problem 

Caveat: 

Ø So far, no matching corrections

Ø Procedure to carry out simulations with matching, 
x-dependence, soft functions not yet known



54MHENS lattice results: Sivers sign change 54

Yoon, Engelhardt, Gupta, et al. (PRD 2017).

ØSivers has different signs in DY & SIDIS

ØCan verify on the lattice using ratios at 
various bT values



55MHENS lattice results: Boer-Mulders shift 55

MHENS (PRD 2016). 

ØPion u-quark Boer-Mulders 
shift in SIDIS

mo
Gℎ?p

𝑓?



56Caveat: nontrivial MHENS-to-Collins connection 56

For the case 𝑷 ⋅ 𝒃 = 𝟎 (focus of all studies so far) MHENS and 
quasi have an equivalent renormalization, soft function, etc. 

For the case 𝑷 ⋅ 𝒃 ≠ 𝟎: 

Ø Non-trivial cusp angles 𝛾, even 
as 𝜂 → ∞

Ø bz-dependent Wilson length

Ø Implies renormalization, soft 
are bz-dependent and won’t 
cancel out in ratios at finite 𝜂

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).
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CS kernel ⏳

Spin-dependent TMD ratios ⏳

3D structure ratios ⏳

Flavor ratios ⏳

Normalized TMD ❌

Proton-pion TMD ratios ❌

Gluon TMDs ❌

… …



Conclusion



59Implications of factorization 59

Quasi-to-Collins matching coefficient: quite convenient…

Ø No spin dependence

Ø No quark-gluon or flavor mixing (simpler to get gluon TMDs!)

Ø NLO & NnLL results: generalized Casimir scaling

Ø Same as LR-to-Collins coefficients, so can compute as the 
rapidity-divergent diagrams in different orders of limits

Implies validity of taking quasi-TMD ratios…

Ø Pz ratios for CS kernel

Ø Beam hadron, flavor, spin ratios for full TMD ratios



60Our contributions 60

1. New unified TMD notation

2. New scheme (LR)

3. Lattice-to-physical TMD factorization: convenient!

Quasi-TMDs have a straightforward, rigorous 
connection to physical TMDs


