# Small-*x* Helicity Phenomenology

Daniel Adamiak
The Ohio State University

In collaboration with Yuri Kovchegov, Dan Pitonyak, Matt Sievert, Nobuo Sato, Wally Melnitchouk, Josh Tawabutr, Andrey Tarasov and Nick Balsonado

#### Proton Spin Puzzle

Jaffe-Manohar Spin Sum Rule:

$$\frac{1}{2} = S_q + L_q + S_g + L_g$$

 $S_{q,g}$  = Helicity of quarks and gluons  $L_{q,g}$  = Orbital angular momentum  $S_{q}$  ~ 30% of proton spin!



#### **Quark Helicity Parton Distribution Functions**

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \sum_q (\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2))$$

Helicity PDFs:

$$\Delta q = \longrightarrow - \bigcirc \longrightarrow$$

- $Q^2$  = resolution at which we probe the proton
- Bjorken  $x \sim \frac{1}{s}$ . We need theory to extrapolate to x=0

#### Quark hPDF - DGLAP extraction



$$\Delta \Sigma = \sum_{q} (\Delta q + \Delta \bar{q})$$

- E. Aschenauer et al, <u>arXiv:1509.06489</u> [hep-ph], (DSSV = de Florian, Sassot, Stratmann, Vogelsang, DGLAP-based helicity PDF extraction from data)
- Large uncertainty at small-x!

#### Gluon Helicity Parton Distributions Function



$$S_g(Q^2) = \int_0^1 dx \Delta G(x, Q^2)$$

 $\Delta G$  = Gluon Helicity PDF

 Uncertainty consistently blows up when extrapolating beyond data

#### The Plan

Any complete description of quark and gluon helicity needs to

- Describe existing data  $(5 \times 10^{-3} < x < 0.7)$
- Predict future, e.g EIC, data  $(4 \times 10^{-3} < x < 5 \times 10^{-3})$
- Compare with said data
- Extrapolate down to x=0
- While maintaining good control over theoretical uncertainty

### Deep-Inelastic Scattering (DIS)

Probing the proton at small *x* 



- Electron of momentum p scatters off proton of momentum P
- Transverse size given by virtuality of photon:

$$\frac{1}{x_\perp^2} \propto Q^2 = -q^2$$

#### DIS in the Dipole Picture

$$W^{\mu\nu} = \frac{1}{4\pi M_n} \int d^4x \, e^{iq\cdot x} \, \langle P|j^{\mu}(x) \, j^{\nu}(0)|P\rangle$$

$$q^{\mu} = \left(\frac{-Q^2}{2q^-}, q^-, \underline{q}\right) \quad \boldsymbol{q} \cdot \boldsymbol{x} = q^- \boldsymbol{x}^+ - \frac{Q^2}{q^-} \boldsymbol{x}^- - \underline{q} \cdot \underline{\boldsymbol{x}}$$

Large  $q^-\square$  large  $x^-$  separation

$$\Rightarrow F_2 \propto |\psi|^2 \otimes N$$



#### DIS in the Dipole Picture



- The proton is a shockwave
- Working in light-cone gauge  $A^- = 0$
- Unpolarized structure functions F1, F2 proportional to Dipole Amplitude

• 
$$N(s) = 1 - \frac{1}{N_c} \langle \text{tr}[V_{\underline{1}} V_{\underline{0}}^{\dagger}] \rangle(s)$$

- Quarks undergo multiple eikonal re-scatterings
- Quark lines replaced with Wilson Lines

• 
$$V_{\underline{1}}[x_f^-, x_i^-] \equiv V_{\underline{x}_1}[x_f^-, x_i^-] = \mathcal{P} \exp \left[ ig \int_{x_i^-}^{x_f^-} dx^- A^+(0^+, x^-, \underline{x}_1) \right]$$



#### (Polarized) DIS in the (Polarized) Dipole Picture

$$g_1 \propto |\psi|^2 \otimes (Q + 2G_2)$$



#### (Polarized) DIS in the (Polarized) Dipole Picture



- In pDIS, the electron and proton have their helicity specified
- Cross-section now dependent on Polarized Dipole Amplitudes:

$$Q_q,G_2, ilde{G}$$

 Quark line undergoes one extra helicity exchange, which is sub-eikonal



#### Sub-eikonal Expansion

Expansion in energy or in x

$$1/x,$$
  $x^0,$   $x^1$  Eikonal Sub-Eikonal Sub-Eikonal  $F_1,F_2$   $g_1^{p,n},\Delta q,\Delta ar q$  Transversity

- No eikonal terms contain any helicity information Wilson lines are helicity independent
- Must calculate sub-eikonal terms to access helicity

#### **Polarized Wilson Lines**



Polarized Dipole Amplitudes:

$$Q_q$$
", " $\widetilde{G}$ "

#### **Polarized Wilson Lines**





$$e^{-ix^{-}\frac{k_{\perp}^{2}}{2k^{-}}} \approx 1 - ix^{-}\frac{k_{\perp}^{2}}{2k^{-}} \Rightarrow \partial_{\perp}^{2} \longrightarrow D_{\perp}^{2} \longrightarrow C$$





Polarized gluon vertex

$$g_{\perp}^2 \longrightarrow ``G_2"$$

#### Polarized Dipole Amplitude - Degrees of Freedom



$$Q_q(s_{10},\eta)$$

Polarized Dipole Amplitudes are functions of

• Transverse separation:

$$x_{10}^2 = (\underline{x_1} - \underline{x_0})^2$$

- Momentum Fraction times center of mass energy: 2S
- Rescaled variables:

$$\eta = \sqrt{\frac{N_c}{2\pi}} \ln \frac{zs}{\Lambda^2} \qquad s_{10} = \sqrt{\frac{N_c}{2\pi}} \ln \frac{1}{x_{10}^2 \Lambda^2}$$

#### Calculating Helicity Distributions

$$\Delta q + \Delta \bar{q} = \frac{1}{N_c} \int_{0}^{\eta_{max}} d\eta \int_{s_{10}}^{\eta} ds_{10} \frac{1}{\alpha_s(s_{10})} \left( Q_q(s_{10}, \eta) + 2G_2(s_{10}, \eta) \right)$$

- We incorporate running coupling that runs with size of the dipole
- $\eta_{max} = \sqrt{N_c/2\pi} \ln(Q^2/x\Lambda^2)$   $s_{10}^{min} = max[0, \eta \sqrt{N_c/2\pi} \ln(1/x)]$

#### Calculating Helicity Distributions

$$\Delta G(x, Q^2) = \frac{2N_c}{\alpha_s(Q^2)} G_2 \left( \sqrt{\frac{N_c}{2\pi}} \ln \frac{Q^2}{\Lambda^2}, \sqrt{\frac{N_c}{2\pi}} \ln \frac{Q^2}{x\Lambda^2} \right)$$

- Jaffe-Manohar Gluon Helicity Distribution
- $\Lambda^2$  Infrared cutoff

#### **Energy Evolution**

Evolution equations are constructed out of Renormalization Group flow equations:

$$\langle O \rangle_{Y+dY} \approx \langle O \rangle_{Y} + dY \frac{d}{dY} \langle O \rangle_{Y}$$

$$\langle O \rangle = \int \mathcal{D}(\delta A) O e^{iS[b+\delta A]} \qquad \qquad \frac{d}{dY} \langle O \rangle \approx \langle \delta A_x \delta A_y J_{xy} \rangle$$
 Gluon Propagator

Evolution looks like gluon emission and absorption

#### **Helicity Evolution**

Using Light-Cone Operator Treatment, we need to resum all gluon exchanges that exchange helicity information



Resumming all terms containing:

$$\alpha_s \int_{x}^{1} \frac{dz}{z} \int_{1/s}^{1/Q^2} \frac{d^2x_{21}}{x_{21}^2}$$

Resum double log (DLA) terms:

$$\alpha_s \ln^2(1/x)$$

Longitudinal part.
Present in un-polarized evolution

Transverse part. UV exactly cancelled in un-polarized evolution

#### Helicity Evolution

• Relate Polarized Dipole Amplitude to themselves at higher energies by resumming emission diagrams - resumming Double Log (DLA) contributions:  $\alpha_s \ln^2(1/x)$ 



#### Large Nc&Nf Helicity Evolution

In the large Nc&Nf, Nc/Nf fixed limit, the evolution equations for the polarized dipole amplitudes close:

$$Q_{q}(s_{10}, \eta) = Q_{q}^{(0)}(s_{10}, \eta) + \int_{s_{10}+y_{0}}^{\eta} d\eta' \int_{s_{10}}^{\eta'-y_{0}} ds_{21} \Big[ Q_{q}(s_{21}, \eta') + 2\tilde{G}(s_{21}, \eta') + 2\tilde{\Gamma}s_{10}, s_{21}, \eta') - \bar{\Gamma}_{f}(s_{10}, s_{21}, \eta') + 2G_{2}(s_{21}, \eta') + 2\Gamma_{2}(s_{10}, s_{21}, \eta') \Big] + \frac{1}{2} \int_{y_{0}}^{\eta} d\eta' \int_{\max\{0, s_{10}+\eta'-\eta\}}^{\eta'-y_{0}} ds_{21} \Big[ Q_{q}(s_{21}, \eta') + 2G_{2}(s_{21}, \eta') \Big]$$

#### + 9 more

- 5 Polarized dipole amplitudes mix under evolution:  $Q_{u,d,s}, \tilde{G}, G_2$
- With 5 auxiliary dipoles:  $\Gamma_{u,d,s}, \tilde{\Gamma}, \Gamma_2$  which impose lifetime ordering
- ullet Small-x cutoff,  $y_0 \propto \ln 1/x_0$

#### Large Nc&Nf Helicity Evolution

- 5 Polarized dipole amplitudes mix under evolution:  $Q_{u,d,s}, \tilde{G}, G_2$
- With 5 auxiliary dipoles:  $\Gamma_{u,d,s}, \tilde{\Gamma}, \Gamma_2$
- For a total of 10 equations that form a closed system
- Undetermined initial conditions:  $Q_{u,d,s}^{(0)}, \tilde{G}^{(0)}, G_2^{(0)}$

#### Inhomogeneous term

The inhomogeneous term is given by a Born-inspired ansatz:

$$\Gamma_q^{(0)} = Q_q^{(0)} = a\eta + bs_{10} + c$$

- Same form of the other Dipole Amplitudes
- Parameters a,b,c need to be extracted from data

Recap:

$$\frac{1}{2} = S_q + L_q + S_g + L_g$$

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \sum_q (\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2))$$

$$\Delta q + \Delta \bar{q} = \frac{1}{N_c} \int_{0}^{\eta_{max}} d\eta \int_{s_{10}^{min}}^{\eta} ds_{10} \frac{1}{\alpha_s(s_{10})} \left( Q_q(s_{10}, \eta) + 2G_2(s_{10}, \eta) \right)$$

$$S_g(Q^2) = \int_0^1 dx \Delta G(x, Q^2)$$

$$\Delta G(x, Q^2) = \frac{2N_c}{\alpha_s(Q^2)} G_2 \left( \sqrt{\frac{N_c}{2\pi}} \ln \frac{Q^2}{\Lambda^2}, \sqrt{\frac{N_c}{2\pi}} \ln \frac{Q^2}{x\Lambda^2} \right)$$

Large  $N_c \& N_f$  Helicity Evolution

$$Q_q^{(0)}, \tilde{G}^{(0)}, G_2^{(0)}$$

#### Observables - Double Spin Asymmetries in DIS

$$A_{\parallel} = \frac{\sigma^{\uparrow \downarrow} - \sigma^{\uparrow \uparrow \uparrow}}{\sigma^{\uparrow \downarrow \downarrow} + \sigma^{\uparrow \uparrow \uparrow}} \propto A_1 \propto g_1^{p,n}$$

- $\uparrow (\downarrow)$  is positive (negative) helicity electron
- ↑ (↓) is positive (negative) helicity proton
- ullet  $A_1$  is virtual photoproduction asymmetry



#### Describing Observables - pDIS

What enters into observables are linear combinations of hPDFs

$$\Delta q^{+} = \Delta q + \Delta \bar{q}$$
$$\Delta q^{-} = \Delta q - \Delta \bar{q}$$

- Three relevant hPDFs in DIS:  $\Delta u^+, \Delta d^+, \Delta s^+$
- $\bullet$  Data exist for two observables that contain these hPDFs in linearly independent combinations:  $g_1^p$  and  $g_1^n$

$$g_1^p(x,Q^2) = \frac{1}{2} \sum_q Z_q^2 \Delta q^+(x,Q^2)$$

ullet  $Z_q$  is the quark charge fraction

#### Observables - Double Spin Asymmetries in SIDIS

$$A_{||}(z) = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\uparrow \uparrow \uparrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\uparrow \uparrow \uparrow}} \propto g_1^h(z)$$

- h is the tagged hadron
- z is the momentum fraction of the virtual photon carried by the tagged hadron



#### Describing Observables - pSIDIS

- 2 observables are not enough to describe 3 hPDFs.
- Expand our horizons to Semi-Inclusive DIS all hPDFs are relevant here, both singlet,  $\Delta q^+$  and non-singlet,  $\Delta q^-$
- Non-singlet distributions obey their own small-x evolution that has been solved

$$\Delta q^{-} = \frac{N_c}{2\pi^3} \int d\eta \int ds_{10} Q_q^{NS}(s_{10}, \eta)$$

- ullet  $Q_q^{NS}$  is the non-singlet Polarized Dipole Amplitude obeys its own evolution equation
- $\bullet\,$  pSIDIS grants us access to the semi-inclusive, spin dependent structure functions  $\,g_1^h\,$

## $g_1^h$ Structure Functions

$$g_1^h(x,z,Q^2) = \frac{1}{2} \sum_q Z_q^2 \Delta q(x,z,Q^2) D_q^h(z,Q^2)$$

- $\bullet$   $D_q^h$  are fragmentation functions giving the probability quark q fragments into hadron h
- ullet 2 Is the fraction of the virtual photons momentum carried by the hadron
- The flavour hPDF is obtained via  $\Delta q = \frac{1}{2}(\Delta q^+ + \Delta q^-)$ • In pSIDIS, we are able to scatter on 2 targets (proton, neutron), tag 2
- In pSIDIS, we are able to scatter on 2 tárgets (proton, neutron), tag 2 outgoing hadrons (pion, kaon) that each have 2 charges - 2x2x2=8 new observables

#### Actually doing phenomenology - JAM framework

The Jefferson Angular Momentum (JAM) framework is a pipeline that enables the statistical comparison of theory to data. Thanks to Nobuo Sato and Wally Melnitchouk for granting us access. The JAM framework is

- Modular We can insert our theoretical description of the hPDFs without disrupting the rest of the pipeline
- Robust The parts that aren't our theory (E.g. F1 structure function) have already been established
- $\bullet$  Capable of extracting parameters It can find the parameters of our initial condition that minimise the  $\chi^2$
- Returns statistical uncertainties























### Global fit of DIS - Data vs Theory



### Global fit of SIDIS - Data vs Theory



### Fitting SIDIS - Data vs Theory



# $\chi^2$ and Data Cuts

- First simultaneous fit of small-x theory to polarized DIS & SIDIS data
- Cut of 0.005 < x < 0.1
- Cut of  $1.0GeV^2 < Q^2 < 10.4GeV^2$
- Cut of 0.2 < z < 1.0
- Describing 234 data points
- With a  $\chi^2/npts$  = 1.01

## hPDFs - (Preliminary)



DIS only: Strange distribution set to zero

### hPDFs - Preliminary



Old version of evolution

## (Preliminary) Extraction of $g_1^P$



- DSSV uses
   DGLAP rational function
   extrapolation of
   x
- We use small-x helicity evolution to predict the x behaviour
- Leads to control over uncertainty

# Contribution from Quark Spin $\Delta \Sigma = \sum_{q} \Delta q^{+}(x, Q^{2})$



# Contribution from Quark Spin $\Delta\Sigma = \sum_{q} \Delta q^{+}(x,Q^{2})$



$$\int_{0.01}^{0.7} dx \Delta \Sigma(x) = \pm 0.36$$

# Contribution from Quark Spin $\Delta \Sigma = \sum \Delta q^+(x,Q^2)$

$$\Delta \Sigma = \sum_{q} \Delta q^{+}(x, Q^{2})$$



$$\int_{0.01}^{0.7} dx \Delta \Sigma(x) = \pm 0.36$$

# Contribution from Quark Spin $\Delta \Sigma = \sum_{x} \Delta q^{+}(x, Q^{2})$



$$\int_{0.01}^{0.7} dx \Delta \Sigma(x) = \pm 0.36$$

# Contribution from Quark Spin $\Delta \Sigma = \sum \Delta q^+(x,Q^2)$

$$\Delta \Sigma = \sum_{q} \Delta q^{+}(x, Q^{2})$$



$$\int_{0.01}^{0.7} dx \Delta \Sigma(x) = \pm 0.36$$

## Contribution from Quark Spin $\Delta \Sigma = \sum \Delta q^+(x,Q^2)$

$$\Delta \Sigma = \sum_{q} \Delta q^{+}(x, Q^{2})$$



#### Large-x region

$$\int_{0.01}^{0.7} dx \Delta \Sigma(x) = \pm 0.36$$

#### Compare with:

$$\int_{10^{-5}}^{10^{-3}} dx \Delta \Sigma(x) = -0.1 \pm 0.1$$

# Constraining the rest of the Polarized Dipole Amplitudes

$$g_1^{p,n} \sim Q_u, Q_d, Q_s, G_2$$

$$g_1^h \sim Q_q, G_2, Q_q^{NS}$$

$$pp \rightarrow jets \sim G_2, \tilde{G}$$

- 2 observables, 4 polarized dipole amplitudes. Under constrained system
- ullet 8 new observables, 3 new polarized dipole amplitudes. Exactly constrained but  $\tilde{G}$  does not enter directly into observables
- Particle production might provide final constraints

### Conclusions

- In order to resolve the spin puzzle, the small-x behaviour of the hPDFs need to be understood
- This is accomplished using small-x evolution
- Along with fitting to data
- Potentially a significant amount if spin is hiding in the small-x region
- More work needs to be done to constrain small-x behavior of the various polarized dipoles - especially  $G_2$  and  $\tilde{G}$
- Could be constrained by studying particle production in pp collisions