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A ““constructive’’ introduction

@ Let us start with a generic bi-local (quark) operator:

O =1 (b) T (0)

@ [ is generic Dirac structure, .e. a linear combination of {I,°, 7%, y°y*, 6"*}.
5 5
I'=Al+ By +C " + D,y " + B, 0™

@ In order to attribute to O any physical meaning, we need to make it gauge invariant.

@ Introduce the parallel-transport operator W (often called Wilson line in this context):

Wiy, x) =Pexp [—igt“/ dz“AZ(z)]
Y

@ lhe gauge invariant version of O 1s then:

O =1 (b) T W(b,0)% (0)

@ Now consider the case in which O 1s highly boosted along —z (as it it was involved
1in a high-energy collision): this frame 1s called Breit (or infinite-momentum) frame.

@ Working the Breit frame has two main important consequences:

@ b, ~ —cb, therefore in light-cone coordinates b ~ (0,57, by).

<

@ In addition, the coethcients {A, B, C,.D,E,} get enhanced, unchanged, or suppressed:

@ C, D, E, enhanced (twist 2), A, B,C;, D, E;, E,_ unchanged (twist 3), C_, D_, E_; suppressed (twist24).



A ““constructive’’ introduction

@ lherefore, a particularly interesting operator 1s the “unpolarised” one:
— o) +
O =1 (0)y" W(b,0)¥ (0|, _,
(in fact, also the others are interesting but in this seminar I will focus on this one.)
@ lo connect this operator to an observable we need to take a matrix element.
@ We bracket it with two, generally different, hadronic states:
_ 1( ! N\ +

M = (H'(p', )] (5) 7" W (5,00 (0) [H (P, A)) |4 _,

@ linally, 1t 1s usually more phenomenologically relevant to study the momentum

behaviour of any such matrix element. We thus take its Fourier transtorm:

H — /db_dsz 6ib_k+_7;bT.kT <H/(p’, )\/) @(b) WﬂL W(b, O)w (O) ’H(Z% )‘)>}b+:0

@ lhisis a (sketchy) definition of generalised transverse-momentum dependent
(GTMD) correlator.

@ GTMDs can be regarded as “mother distributions” (ci. )

@ They encode “the most general one-body information of partons, corresponding to the

full one-quark density matrix in momentum space” (cut. ).

Further readings:



A ““constructive’’ introduction

@ Pretty much all relevant hadronic distributions in high-energy physics can be made
descend from G TMDs. Introducing the definitions:

1
@ A common set of kinematic variables used to parameterise G'1'MDs 1s:
Pt
kT =Pt A+:§2 = A2
@ A (partial) genealogy of G'TMDs then looks like this:
GTMD(z, €, kp, 1)
% 5D
gat — 0 _~ T */ d2kT
TMD(,%, kT) ......... GPD(SE, 57 t) 3D
/koT*' ......... S,t — 0
..... 1D



A sound GTMD definition

A proper definition of G'TMD distributions requires a combination of a GTMD
correlators and soft function.

&

‘e

Working 1n b space, u.e. the Fourler conjugate ot the partonic transverse momentum
k., 1s convenient:

A

A A

fi/H(zafabTvt) :Sz §(bT)(I)i/H($7€7bT7t)a ZZQag

@ The unpolarised GTMD quark and gluon correlators are defined as:

T dy —ix(n- A n n
(I)q/H(xa ga bT7 t) — %6 o)y <P0ut [quJ’)q} (5) g [Wn,qwq] (_5) ‘ Pm>
by &brt) = C [ et (Pon [FEWL) (5) WP (=3) | i)

@ The soft function in non-singular (Feynman) gauge reads:

A

1 .
Si(br) = ﬁch:(O\Wﬁ,i(bT)Wi,i(bT)Wn,i(O)W—Ti(O)\0> , 1=4,9

f=

@ where the Wilson line 1s defined as:

W,.i(br) ="Pexp {—igtg]vu/ ds AE (b + sv)}
0



A sound GTMD definition

o>

@ Graphical representation of the GTMD correlators:

Pjn P out Pin P out




| Renormalisation of GTMDs

@ GTMD correlators and soft function are separately attected by UV, IR, and rapidity
divergences that need to be regulated in order to perform any calculation:

@ UV and IR divergences are regulated through dim. reg. in 4 — 2¢ dimensions,

@ rapidity divergences require an ad foc procedure (see below).

-

@ While IR and rapidity divergences cancel out, the UV ones need to be renormalised:

Si(bTa M Ca 5) — 25% Zs—*,f} (bT7 Qv C? M 57 G)Si(bTa Qv 57 6)

(I)Z/H(:Ev 57 bT7 ty 1, 5) — 111’% chi(ga M 57 G)Ci)Z/H(ZC, 57 bT7 t, 57 6)
€E—> ’

=

@ Renormalisation of UV divergences leads to the introduction of the scale u, while
the renormalisation of rapidity divergences introduces the scales { and Q.

[_d

@ Renormalisation constants Z in the MS at one-loop accuracy are presented below.

@ We can thus obtain the renormalised G'TMD distributions:

Fi/H(x7€7bT7t7:u7 C) — 6151120 Z‘é’/f(bT,Q,C,/.L,& E)Zg}g(gaua& E)ﬁi/H(x,f,bT,t, 57 6)
= lim Si_l/z(bT,,u,<,5)¢i/H($,f,bT,t,M,5) 7

6—0
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Renormalisation of GTMDs

Exploiting the independence ot the bare quantities from the renormalisation and
rapidity scales allows us to derive evolution equations:

dh’lfi/H(m7€7bT7t7/’L7C)

— K.(bp,
dln+/C (br, 1)
dlﬂfz H(Cl?,g;bTatmuaC)

dln u

The anomalous dimensions K; and y; are naturally related to the renormalisation

constants:
. danSi(bTaQ7<7ILL757 6)
K’i ) — l ,
(bT 'u) e,c%glO dlIlC=
1/2 —1

. dln[ZS,'é (bT7Q7C7,u757 E)Zcb,i(fa:u? 57 6)]

’yz(:ua C) — lim
€,0—0 dln,u

Moreover, the requirement that cross derivatives are equal leads to introducing a
further anomalous dimension:

dlnlu — dln\/z — ”YK,Z(&S(M)) 8




Renormalisation of GTMDs

@ We can solve the evolution equation obeyed by the anomalous dimensions K; and ..
In this respect it 1s crucial to choose wisely the boundary-condition scales.

@ lor the rapidity kernel K;, the most convenient scale 1s y = p, = 2e772/|b| so that:

dK; (b, "y '
( T 'u) — _,VK,Z(G’S(M)) = K’L(bT7ILL) — Ki(bTﬂub) _/ i/fyl{’i(a‘s(’u ))
dln a

Hb

@ For the renormalisation kernel y,, the most natural choice is £ = p?/(1 — £2) so that:

d;jfl“&? o ei(a() = 0) = (s () — Yica(as () In (“(l - W)

where we have defined Vr,i(as(p)) = vi(p, p//1 —§2)

o=

@ 'The final form of the GTMD evolution equations reads:

dlﬂfi/H(xagvbTatnu7C) . . ud’u/ : /
dln+/C = Hilbrim) - —/ub ' WK,Z(CLS(ILL )
dlnfz 9 7b 7t7 ) 1 — &
/H(;EM rhine) Vr,i(as(p) — vk i(as(p)) In <\/( . : ><>

-

@ All kernels are purely perturbative quantities. 9



Matching on GPDs

@ Inspired by TMDs, we define a set of matching functions € that for small values
of |by| allows us to express G'1MDs in terms of their collinear counterpart: GPDs.

>~ d x
Fi/H(xafvbTatmu?C) — / ;ycz/k (ya gabTaﬂa C) Fk/H (gafatMu)

= Ci/k(xa’%abTaua C) %@/H (ajagata@GPD

@ In order to compute the functions €, we make use of the parton-in-parton
distributions in which hadronic states are replaced by partonic states:
JT':,;/j(iC, 57 b, M C) — Cz/k(x7 K, br, M C) Y Fk/j (CE, ‘Sa :u)
€T
@ Since the action of partonic fields on partonic states 1s computable perturbatively, the

following perturbative expansions are meaningtul:

‘Fz’/j(x?faanuaC) — Z(as>nfi[7j]'(x7§7bT7:uag)7

— 41
()" i 3
Fk/j(x,f,,u) — Z(E) Fk;/j(xagnu)7 K = —
n=0 xr
= as n n
Ci/k(xa/@ bTuMaC) = Z (E) Cz[/]]g(xvfiv bT7M7C)'

n=0

@ Given the matching formula, the strategy 1s to compute F,,; and Fj,; in perturbation
theory to finally extract €. 0



Matching on GPDs

@ lheleading-order calculation 1s easily done considering the following diagrams:

yn yn _gn yn
2 9 2 9
B (2,8) = ACRIE
q/q(x7€> — g/g\"
(1+&p (1—=&p (1+&)p (1—=9&p

-

@ The resultis:

with D (&) =4/1-¢ and D& =1-&.

@ Itimmediately follows that:

Cfb[(/)]lg(gja K, bT7 s C) — 521{5(1 o :E)



Matching on GPDs

@ We now move to NLO where we have:

Cz[}]j(xa’%a bT?M)C) — Dg_l(f) [Fz[}]j(xagvb’faluvg) o F@[/li (337&-7:“)}

@ thatin terms of parton-in-parton G'TMD correlators and soft function reads:
1] 1 1] 1] 1 1]
Cz/k(xa K, bT7 My C) — Dk (f) |:(I)z/k(aj7 57 bT7 My 5) o Fz/k (Qf, 57 :u)} _§5zk5(1_x)sz (bTa M C? 6)

@ The terms in the squared brackets (GTMD correlators and GPDs) are computed
diagrammatically and their combination is IR finite.

[

@ lhe one-loop corrections to the G'1MD matching functions can finally be written as:

2
rea 1
CE}];{(% K, bT7 My C) - @[9]147 l(xa R, 5) In (%) —I_Rgl/]]g(x? K)_i(szkd(l_x)sz[l] (bT7 M C) 5)
b

@ Notice that both @l[;)k]’real and Sl.[l] are separately affected by a rapidity divergence.

12



Regularising rapidity div.
@ lo regularise rapidity divergences we resort to the principal-value (PV) prescription:

1 11 1 | _ (n- k)
k) k) [ ! ] (n k)2 1 02(n-p)?

(n-k) 2| (n-k)+idn-p) (n-k)—1id(n-p)

@ Parameterising the + component of the loop momentum k as k™ = zP™, this translates in:

1 1
>< ) —6(1 —2)Ind
1 —=2 1 —=2 n

@ With this at hand, the “real” part of the splitting functions can be written as:

O|,real 0 0], vir
7’7;[/];,C (z,K,0) = PL‘[/]/.C(CC» K) — Pz'[/]k (x5, 6)

Cy=Cs=N,=3

Oy o= N1 0] bode
0 =0r= 55— =3 = Pip(@, k) —0id(1 — 2)2C; —1In(1 — &%) =2 T
- 0
K, = 1A iy T = P 5) — 6d(1 — 2)2C; [K; — In(1 — €2) + 2In ]

@ The rapidity divergence of 2! is now explicitly exposed.:

1 0 I 1
Ci/k(xa"iabTalu?C) = P /k(x "{) In (,LL ) 7?’/k(x K’)
b

2

+  0;0(1 — x) [20&- (K; —In(1 — &%) +2Ind) In (Z
b

@ We need to verity that this rapidity divergence cancels against the soft function.

1
) o §Sz[1] (bT7 My Ca 5)

13



Soft function at one-loop

@ |lhe one-loop correction to the soft function arises from the following diagrams:

0 + h.c.

3

| @ v

@ T'he calculation must be done using the the same PV regularisation procedure for rapidity
divergences used in the GTMD correlators:

b7, Q.00 = 10 (m?)T(-0 (L) (L w0~ )
b

S2 1 5 Iu2 S ’u2 ,LL2 7T2
=3 () - (e om(Ge) ) () + T -00)

@ The appearance of the scale O > A(ZQCD 1s a consequence of the PV regularisation of the

1/(n - k) and 1/(7 - k) etkonal propagators. They introduce the external light-like
momenta p and p defined such that (p +p)> =2p - p = 0°. 14



Soft function at one-loop

@ The one-loop soft function is affected by a UV double pole that is renormalised in MS by
means of the renormalisation constant:

SQ S 2 2
ZSz(bT7Q7CM75€)_1_E4C [6 —I__l (Q/;ég)—l_ln(lu) (ég)]+0( )

@ L'he arburary scale ¢ 1s introduced to parameterise the finite part of the renormalisation
constant.

@ Iinally, the one-loop renormalised sott function at one loop reads:

2 2 2 2 2
'ub Hy :“b ¢ 6

@ This result guarantees the cancellation of the rapidity divergence in the matching
functions that, using this result, become:

(e

2
1 0 P 1
ik (x,k, b, i, () = —P[/]If(x ) In (Nb> +R[/]k(a: K)

- - sty (1) - (ko () ) () + 53

@ 1his result 1s finite and we are just left with extracting 9?1[/1](] 15




GTMD correlators at one-loop

» %l[/lk] can be extracted by retaining the O(e/€) order in the computation of the parton-in-
parton GPDs:

=

@ ‘“incidentally”, this was done in (Just accepted for publication in EP]JC).

@ Atone-loop (and light-cone gauge) the diagrams to be considered are:

E _d
P

_ | %

@ Only “real” diagrams. 16



GTMD correlators at one-loop

@ l'he the full GT'MD correlator at one loop takes the form:

=1 Se 0|,real O|,real “2 1
®’£/]k‘,(x7§7bT7/’L75> — Dk(f) [_apz[/]k (.T,/i,(S) _PZ[/]k (ZU,/i,d) ln,u_% _I_RE/]]{('T?’%)

2€
CUv

@ Only the “virtual” part of full GI'MD correlator 1s UV divergent.
@ The UV divergence is renormalised in MS by means of the following (lavour diagonal)
renormalisation constant:
g 2 Se 2
Zo,i(§ 1y 0,€) =1+ 4—2@' (K —In(1 — &%) +2Ind) — + O(ay;)
/s €
@ T'his renormalisation constant, along with that ot the soft function, 1s necessary to

compute the one-loop correction to the G'1TMD anomalous dimensions.



GTMD correlators at one-loop

@ Working in the non-singlet/singlet basis:

Zq)q/k"_q)ﬁ/k
T=D Py — Py ‘1’+(q
q

P/
[1] d
@ The functions %' take the following general structure: (@) 2 gla) = / yy g ( g >
2@1 —Y)R y,)+(% - R; M, )
“DGLAP” term “ERBL” term
@ where
¢ — ( 1 -
Ri’q[;] (¥, k) = R4 1 (y, k) R;rq[g]( k) = dnsTr (1y£ ,{252))2
(ol -y Ryl 20p— N | (1= r)y”
R, (y,x) = 2CF 1 — K22 | % (y, k) = "r(l — K292 R;q[;] (y, k) = 4”fTR(1 _ 2 z 2
\ y°)
B 1— ( (1 &?) ( rry(1—y)
| R; 1] (y,5) = QCFi — ,;?;é Rig[;]( ,k) = 2CF = &23/29 Rii_g[g]( ,k) =804 (1 — r2y2)2

9 \

1 — g2 _ (1 _ 2,2
R+ [1](y K,) _ 2CF K R—l— 1 ]( K,) _ CA (1 K’)(l—i_/{’ (1 7/{’)’{ Y )

2,99 (1 _ szz) \ 2,99 /1(1 _ /432y2)2

18
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Anomalous dimensions

We can finally compute the one-loop correction to the GTMD anomalous dimensions:
dln ZS,'L(bT7 Qa Ca M 57 6)

Ki(br,p) = Tim, dIn
. dIn [21/2(bTaQ7C /L,(SE) <I>2(571u757€)]
Yi(p,¢) = lim
€,0—0 dln,u

Given the renormalisation constants presented above, and their combination:

2 2 2
iz =g (koo () ) o () (@) o

one readily finds:

2
Kibr) = ~aGmn (%) + 0@
b

2

il &) = Ew (Ki—kln((l _“52)0) +0(a3)

The first coethcient of the expansion of the anomalous dimensions 1s:

K' =0 Ap, =4CK: g, =8C

Unsurprisingly, these results coincide with those obtained 1in the TMD framework.
19



Forward limait

@ Given the general result:

2

!
(e broud) = P in (4 ) + REL @0
b

Lo (12 i RN L T
- (E) ()

@ setting y =y, eliminates all logarithmic terms:

2

e
CE}L(QE, K, bT7 b, C) — Rb]k(x7 K’) o 52165(1 o x)CZE

=3

@ We can now take the forward limit k — 0 that 1s equivalent to taking & — 0:

2

. —_ b 7-‘-
lim CM = (y, &, br, 11, ¢) = lim Céﬁ*(y, K, br,uy,, () = 2Cp(l—y)—-Cr—95(1—1y)
k—0 r—0 6

lim Coo ™ (y, ki, br, i, Q) = 4nyTry(1 —y)

11;1—>H%) Cglcl]’+(y7 l{’7bT7/’Lb7<) — QCFy

2
lim CF (y, i, br, iy, €)= —Ca—38(1 —y)
Kj_)() gg Y I Y Y 6

o

@ which reproduces the well-known TMD results s
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Reconstructlng GTMDs

We can now use the matching functions to reconstruct G'I'MDs.
The unpolarised GTMD distributions can be decomposed as:

krn - ATn kT AT

10 ; 10 ; 10 ;
1,2 T —p 113 + Ve 1,4] u(Pr)

i n-P

1 i
JH = mu(Pout) [ 1,11

Each function F {’l 1s generally complex and can thus be decomposed into a real and an
Imaginary part:

' 1,€ . 72,0 1,€ 1,0

f,z:FLzJFZFu Fl,lvFl,lER
The real part of F{’l (F{el) in b space for small |by| and for u* ~ ¢ ~ pu? is related to the
GPDs H; and E; precisely by means of the matching functions:

(CE 5 bTat MJC) Cz/](aj K bTanC)% [(1 _52)Hj($7£7t7:u) _‘fZEj(xafatwu)]

T_O

Moreover, the forward limit of F {61 1s the unpolarised TMD f; ;:

glim F1 1(:1: §,br,t, 1, ¢) = f1,i(z,br, p, ()

21



Reconstructlng GTMDs

We can evolve F}’ L | to any scale by solving the evolution equations:

-

@ O(a) matchmg functlons allow us to reach NNLL accuracy. Anomalous dimensions (that
coincide with the TMD ones) need to be evaluated accordingly.

@ LExtrapolation to large | b, | 1s obtained a la GSS, w.e. by means of a b« prescription:
b\ 3
b.(br) = L (_ 2 )
o\ e (CH)

@ and introducing an appropriate non-perturbative function fyp. The final result 1s:

Fy§(z, & br,t,1,C) = Cij(x, 5, by, i, , 1) @ (1 — ) Hj(z, &t ) — E2Fj(, &, t, iy, )]

X Ri [(14,€) = (b, 143,)]

< fxe(@,br, (1—€7)0)
@ |he evolution operator (or Sudakov form factor) is given by:

L VA=),

b, by

R; _eXp{K (b*alub )

V(- £2><} }

{wz(o&s(u’)) —prcals () I Y

@ linally the G'I'MDs 1n k; space are obtained by inverse Fourier transform:

1,6 1 >
Flzl(xaga kTatnu)C) — %/ de bTJO(kaT) (aj 6 bTat M?C)
0

22



Numerical setup

@ lhe numerical code used to compute F {"1

e L]

1s public:
https://github.com/vbertone/GTMDMatching

-

@ and s based on a combination different public codes:

6 PARTONS [https://partons.cea.fr/partons/doc/html/index.html] for the handling of GPDs:

@ the Goloskokov-Kroll (GK) model for the GPDs H; and E; has been used.

6 NangaParbat [https://github.com/MapCollaboration/NangaParbat] for the handling of TMDs:

@ the PVI9 determination of fyp along with the b. function.

[

@ APFEL++ [heps/sithub.com/vbertone/apfelxx] 18 used for:

@ the numerical computation of the convolutions,

@ the collinear evolution of GPDs,

@ the computation of the Sudakov form factor,

@ the inverse Fourier transform. 23
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Results

GK model + PV19 + NNLL
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Results
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Results

The x behaviour of F {el presents a

divergence at x = €.

'This enhancements 1s probably signalling
the need for some sort of resummation.

0.10

o o
) )
(=] (0.4]

e
o
=~

? 1g,’1€(x7 €, kT’ t, u, C)

0.02

Further investigations are necessary.
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xr

Logarithmic enhancements caused by large threshold logarithms of the kind
In(1 — x/&) have been studied in the past:

@ Alunoluk et al.

the hyperbolic cosine.

have studied the resummation of these logarithms in
deeply-virtual Compton scattering (DVCGS) obtaining a Sudakov-like resummation by means of

, within the context of a fixed-order NNLO

has derived a resummation formula that closely
resembles that obtained for threshold logs in inclusive DIS. This result agrees with

@ More recently Braun et al.
calculation of DVCS, have challenged the result.
@ A few days ago Schoenleber
but disagrees with
@ Musatov and Radyushkin

the Sudakov resummation of thresholds logarithms takes place in an “unconventional”

have analysed y*y — z°

leading to an enhancement rather than to a suppression in the Sudakov region.

arguing that
form

27
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Conclusions

At present, the study of the hadronic structure 1s a very alive branch of particle
physics.

While 1t started with the need to to describe high-energy processes, it has proven to be
a very prolific research field that gives us access to a mine of information.

As the study of PDFs has reached impressive precision, the determination of '1'MDs
1s quickly catching up, and phenomenological extractions of GPDs are taking their
first steps, GTMDs represent the next and ultimate frontier.

G TMDs can be regarded as “mother” distributions, directly connected with the long-
sought Wigner distributions, from which all others descend.

Tools to attack G'1'MDs are currently being developed:

=g

@ the computation of the matching functions 1s only one of them,
@ other examples are: factorisation theorems, model developments, lattice calculations, etc.
Much work still needs to be done but a lot of effort 1s being put into this field both on

the theoretical and experimental side. The EICG 1s on the horizon and 1s expected to
be a real breakthrough for the study of the hadronic structure. 28
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Matching on GPDs

We now move to NLO where we have:

¢

Cg}g(maﬁ'a bTa:qu) — Dg_l(f) [Frb[}]y(xagabTmuaC) o Fz[/li (az,f,,u)}

@

Considering the definition of the GTMD distributions and the perturbative
expansions of parton-in-parton G’ TMD correlators and soft function:

Si(br, 1,¢,8) = 1+Z( 2 )" s (br, 1. ¢, 6)

(I)z/j (337 57 bT7 M 5)

such that:

D;(€)6:;6(1 — x) + i( ) 0"l (2,6, b1, 1, )

¢

’I,/j(x S? T, U, C) Z/J(CE gabT M, 5) o %D](f)gzjé(l _x)sgl](bT7M7C75)

||

@ the one-loop correction to the matching functions are thus computed as:
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Matching on GPDs

@ lhe computation of ng[/lk] can be simplified by observing that:

(1’7[;1/]/{ _ q)£1/]];rea1 N (I)El/]l;virt Fz[};{ _ FZ[};{ real | FZ[}]L virt
@ where by “real” we denote those diagrams that have attachments between the —#/2

and the 7/2 legs, while “virtual” those that have not, e.g:

} Real \ /é% Virtual
@ ltis easy to see that in b, space:
(I)E}]];virt _ Fi[/l;ﬁ,virt
@ so that:
ol Fl — all  ple

@ lherefore, we only need to consider “real” diagrams (“virtuals” cancel out). 3]



Matching on GPDs

@ Moreover, the “real” part of the renormalised one-loop GPDs has the form:

2€ 2€ 2€
FUL™ (0 ¢ 1) = Dy(€)S, [P[?]kal (x, . 6) (m . ) — Rl (2, %) ( J )]

€IR SIIAY €IR

=

@ while “real” part of the (UV convergent) G1MD correlator 1s:

2e TO5 (1 + YReE)
€IR

O (2,6, b1, 1, 0) = —Di() | PN (@, 1,6) — €R ) (2, 5) | g +0O(e)

i/k /k i/

=g

@ Their combination 1s finite in four dimension, we can then take the ¢ — 0 limat:
2

,real M
Dy (2,6, b7, j1,8)—F, (2,6, 1) = Dy () [—PESL (2, 5, 8) In (M) + Ry (@, fe)]

-

@ The one-loop corrections to the GTMD matching functions can thus be written as:

2
rea 1
Ciy (@, b, b, 11, ) = =P (@, 5, 6) In (5 )+R[)k<x #) =5 0id(1=2)S;" (br, 1, ¢, 0)
b

@ Notice that both @l[?k] and Sl.[l] are separately attected by a rapidity divergence. 32



GTMD correlators at one-loop

@ Although we showed that for the computation of the matching functions we only need

the “real” contribution to the G'TMD correlators (the “virtual” one cancels against
GPDs), we have computed the full GTMD correlator (“real” + “virtual’):

- Se ,real ,real ,LL2 1
1) (x,€,br,u,8) = Dy(€) [— —P " @ 8) = P (a4, 0) In 2t Ry (@, k)
,LL2€S
€UV
@ Because of the “virtual” part, the full G1MD correlator 1s UV divergent.

@ The UV divergence is renormalised in MS by means of the following (lavour diagonal)
renormalisation constant:
g 2 Se 2
Zq)ﬂ;(f,,u, 0, 6) =1+ 4—QCZ (Kz — 111(1 — & ) + 21115) — + O(Oés)
T €
@ Asshown below, this renormalisation constant 1s necessary to compute the one-loop

correction to the GTMD anomalous dimensions.




