Resolving PDFs \& GPDs of the Nucleon from Lattice QCD

February 28, 2022

Colin Egerer

On Behalf of the HadStruc Collaboration
Jefferson Lab

Deep Inelastic Scattering (DIS) \& PDFs

$$
\ell+A(P) \rightarrow \ell^{\prime}+X
$$

Invariants $\begin{cases}q^{\mu}=\ell^{\mu}-\ell^{\prime \mu} & Q^{2} \equiv-q^{2} \geq 0 \\ s=(P+\ell)^{2} & x=\frac{Q^{2}}{2 P \cdot q} \\ W^{2}=(P+q)^{2} & \end{cases}$

Inclusive cross section in terms of leptonic/hadronic tensors

$$
\begin{gathered}
\frac{d \sigma_{\mathrm{DIS}}\left(x, Q^{2}, s\right)}{d^{3} \ell^{\prime}} \propto L_{\mu \nu}^{W^{\mu \nu}} \text { Perturbative } \\
W^{\mu \nu}(q, P)=\frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z}\langle P, S| \mathcal{J}^{\mu}(z) \mathcal{J}^{\nu}(0)|P, S\rangle
\end{gathered}
$$

Lorentz decomposition into structure functions (SFs)

$$
\begin{aligned}
W^{\mu \nu}=\left(-g^{\mu \nu}\right. & \left.+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\frac{\hat{P}^{\mu} \hat{P}^{\nu}}{P \cdot q} F_{2}\left(x, Q^{2}\right) \\
& +i \epsilon^{\mu \nu \alpha \beta} \frac{q_{\alpha} S_{\beta}}{P \cdot q} g_{1}\left(x, Q^{2}\right)+i \epsilon^{\mu \nu \alpha \beta} \frac{q_{\alpha}\left(S_{\beta}-P_{\beta} \frac{S \cdot q}{P \cdot q}\right)}{P \cdot q} g_{2}\left(x, Q^{2}\right)+\text { P.V. }
\end{aligned}
$$

QCD factorization theorems relate cross sections (SFs) to PDFs
Eg. J. Collins, D. Soper, G. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1989)

$$
F_{i}\left(x, Q^{2}\right)=\sum_{a=q, \bar{q}, g} f_{a / h}\left(x, \mu^{2}\right) \otimes H_{i}^{a}\left(x, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)+h . t .
$$

> number densities \&

$$
\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\langle h(p)| \bar{\psi}\left(\frac{z}{2}\right) \gamma^{+} \Phi_{z^{-}}^{(f)}\left(\left\{\frac{z}{2},-\frac{z}{2}\right\}\right) \psi\left(-\frac{z}{2}\right)|h(p)\rangle
$$

First-Principles Lattice QCD

Feynman Path Integral representation

- infinite trajectories of QM system
R. Feynman, Rev. Mod. Phys. 20, 367 (1948)
$\langle\Omega| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}|\Omega\rangle=\mathcal{Z}^{-1} \int \mathcal{D}[\phi] \phi\left(x_{1}\right) \phi\left(x_{2}\right) e^{i S[\phi]}$

$$
\langle\Omega| \hat{\mathcal{O}}|\Omega\rangle=\mathcal{Z}^{-1} \int \mathcal{D}[\phi] \mathcal{O}[\phi] e^{i S[\phi]}
$$

Strict UV/IR cutoffs

- fermions restricted to lattice sites
- oriented fields

$$
U_{\mu}(x) \in \mathrm{SU}(3)
$$

- gauge links
$U_{\mu}(x) \equiv e^{i a A_{\mu}(x)}$
- Dirac operator \& propagators $U_{\mu}(x) \equiv e^{i a A_{\mu}(x)}$

Oscillatory action - Sign Problem

$$
\mathcal{Z}=\int \mathcal{D}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right] e^{i S_{\mathrm{QCD}}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right]} \quad \Rightarrow \quad \mathcal{Z}_{E}=\int \mathcal{D}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right] e^{-S_{F}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right]}
$$

Integrate out fermionic fields

$$
\left\langle T\left\{\prod_{i} \mathcal{O}_{i}\right\}\right\rangle=\int \mathcal{D}[U]\left\langle\prod_{i} \mathcal{O}_{i}\right\rangle_{\mathrm{F}} P[U] \quad\left\langle T\left\{\prod_{i} \mathcal{O}_{i}\right\}\right\rangle \approx \frac{1}{N} \sum_{k=1}^{N} \prod_{i} \mathcal{O}_{i}\left[U_{k}\right]
$$

First-Principles Lattice QCD

Feynman Path Integral representation

- infinite trajectories of QM system
R. Feynman, Rev. Mod. Phys. 20, 367 (1948)
$\langle\Omega| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}|\Omega\rangle=\mathcal{Z}^{-1} \int \mathcal{D}[\phi] \phi\left(x_{1}\right) \phi\left(x_{2}\right) e^{i S[\phi]}$
$\langle\Omega| \hat{\mathcal{O}}|\Omega\rangle=\mathcal{Z}^{-1} \int \mathcal{D}[\phi] \mathcal{O}[\phi] e^{i S[\phi]}$
Strict UV/IR cutoffs
- fermions restricted to lattice sites
- oriented fields

$$
U_{\mu}(x) \in \mathrm{SU}(3)
$$

- gauge links
- Dirac operator \& propagators $U_{\mu}(x) \equiv e^{i a A_{\mu}(x)}$

First-principles scheme to numerically compute quantities directly from QCD Lagrangian

$$
\Lambda=\left\{x \in \mathbb{R}^{d} \mid x=n a, n \in \mathbb{Z}^{d}\right\} \quad \text { K. G. Wilson, Phys. Rev. D } 10,2445 \text { (1974) }
$$

Oscillatory action - Sign Problem

$$
\mathcal{Z}=\int \mathcal{D}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right] e^{i S_{\mathrm{QCD}}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right]} \quad \Rightarrow \quad \mathcal{Z}_{E}=\int \mathcal{D}\left[\psi_{i}, \bar{\psi}_{i}, A_{\mu}\right] e^{-S_{F}}
$$

Integrate out fermionic fields

$$
\left\langle T\left\{\prod_{i} \mathcal{O}_{i}\right\}\right\rangle \equiv \int \mathcal{D}[U]\left\langle\prod_{i} \mathcal{O}_{i}\right\rangle_{\mathrm{F}} P[U] \quad\left\langle T\left\{\prod_{i} \mathcal{O}_{i}\right\}\right\rangle \approx \frac{1}{N} \sum_{k=1}^{N} \quad \text { Collapse of light-cone in Euclidean metric of LQCD }
$$

From Matrix Elements in Lattice QCD to PDFs

Two popular, and related, methods to obtain PDFs
from matrix elements of space-like quantities in Lattice QCD

$$
M^{[\Gamma]}(p, z)=\langle h(p)| \bar{\psi}(z) \Gamma \Phi_{\bar{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle
$$

LaMET

Large Momentum Effective Theory
Quasi-PDF: Fourier transform - distribution of parton
longitudinal space-like momenta
Factorizes into PDF with power corrections in $1 / p_{z}^{2}$
X. Ji, Phys. Rev. Lett. 110 (2013) 262002

SDF

Short Distance Factorization Short-distance OPE applied to matrix element

Factorizes into PDF with power corrections in z^{2}
V. Braun and D. Mueller, Eur.Phys.J.C 55 (2008) 349-361
A. Radyushkin, Phys.Rev.D 96 (2017) 3, 034025
Y. Q. Ma and J. W. Qiu, Phys. Rev. Lett. 120 (2018) 2, 022003

Several other methods exist to extract SFs from suitable Euclidean correlations

```
    > Hadronic tensor
    J. Liang et al., Phys.Rev.D 101 (2020) 11, 114503
    > "OPE without OPE"
    K.U. Can et al., Phys.Rev.D 102 (2020)114505
A.J. Chambers et al., Phys.Rev.Lett. 118 (2017) 24, }24200
```

$>$ Auxiliary quark methods (Pion DAs \& moments from OPE)
HOPE Collab., Phys.Rev.D 105 (2022) 3, 034506
W. Detmold et al., PoS LATTICE2018 (2018) 106
G. Bali et al., Eur.Phys.J.C 78 (2018) 3, 217
G. Bali et al., Phys.Rev.D 98 (2018) 9, 094507
$>$ Current-current correlators

$$
\begin{gathered}
\text { R.S. Sufian, J. Karpie, CE et al., Phys.Rev.D } 99 \text { (2019) } \\
7,074507 \\
\text { R.S. Sufian, CE, J. Karpie et al., Phys.Rev.D } 102 \\
(2020) 5,054508
\end{gathered}
$$

Comments on Space-like Parton Bilinears

A non-trivial light-cone limit:

$$
M^{[\Gamma]}(p, z)=\langle h(p)| \bar{\psi}(z) \Gamma \Phi_{\tilde{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle
$$

$$
Z_{\text {link }}\left(z_{3}, a\right) \simeq e^{-A\left|z_{3}\right| / a}
$$

Additional UV singularities for space-like Wilson line
Add. UV divergences must be regulated and removed prior to cont. limit
M. Constantinou and H. Panagopoulos, Phys. Rev. D96, 054506 (2017)
C. Alexandrou et al., Nucl. Phys. B923, 394 (2017)
$>\quad$ truncated FT.
$>$ Backus-Gilbert, etc.

$\widetilde{q}\left(\widetilde{x}, \mu, p_{z}\right)=\int_{-1}^{1} \frac{d x}{|x|} C\left(\frac{\widetilde{x}}{x}, \frac{\mu}{p_{z}}\right) q(x, \mu)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{p_{z}^{2}}, \frac{m^{2}}{p_{z}^{2}}\right)$
X. Ji, Sci. China Phys.Mech.Astron. 57, 1407 (2014)

Reduced Distribution

K. Orginos, et al., Phys. Rev. D96, 094503 (2017)

Matching (SDF) / PDF Extraction

$>$ loffe-time independent

$$
\mathcal{M}\left(\nu, z^{2}\right)=C\left(z^{2} \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right) \otimes Q\left(\nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

T. Izubuchi, et al., Phys.Rev. D98 (2018) no.5, 056004
A. Radyushkin, Phys.Lett. B781 (2018) 433-442
A. Radyushkin, Phys. Rev. D 98 (2018) no.1, 014019 J.-H. Zhang, et al., Phys.Rev. D97 (2018) no.7, 074508

Towards the Unpolarized PDF from Pseudo-Distributions

A matrix element of a distinct character

$$
M^{\alpha}(p, z)=\langle h(p)| \bar{\psi}(z) \gamma^{\alpha} \Phi_{\hat{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle=2 p^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)+2 z^{\alpha} \mathcal{N}\left(\nu, z^{2}\right)
$$

$$
\nu \equiv p \cdot z
$$

Unpolarized leading-twist PDF defined in terms of $k^{-}, \mathbf{k}_{\perp}$ integrated parton correlator

$$
\begin{gathered}
p^{\alpha}=\left(p^{+}, \frac{m_{h}^{2}}{2 p^{+}}, \mathbf{0}_{\perp}\right) \\
z^{\alpha}=\left(0, z^{-}, \mathbf{0}_{\perp}\right) \quad \alpha=+
\end{gathered}
$$

[Unpolarized] Ioffe-time Distribution (ITD)

$$
\mathcal{M}\left(p^{+} z^{-}, 0\right)_{\mu^{2}} \equiv Q\left(\nu, \mu^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} f_{q / h}\left(x, \mu^{2}\right)
$$

V. Braun et al., Phys.Rev.D 51 (1995) 6036-6051

Generalization of unpolarized light-cone PDF onto space-like intervals; Lorentz covariant parton momentum fraction

Frame amenable to calculation in Lattice QCD

$$
\alpha=4 \quad p^{\alpha}=\left(\mathbf{0}_{\perp}, p_{z}, E\right) \quad z^{\alpha}=\left(\mathbf{0}_{\perp}, z_{3}, 0\right)
$$

[Unpolarized] Ioffe-time Pseudo-distribution (pseudo-ITD)

$$
\mathcal{M}\left(p_{z} z_{3}, z_{3}^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} \mathcal{P}\left(x, z_{3}^{2}\right)
$$

[^0]
Obtaining the Pseudo-Distribution

Needed correlation functions:

$$
\begin{aligned}
C_{2}\left(p_{z}, T\right) & =\left\langle\mathcal{N}\left(-p_{z}, T_{f}\right) \overline{\mathcal{N}}\left(p_{z}, T_{0}\right)\right\rangle=\sum_{n}\left|\mathcal{A}_{n}\right|^{2} e^{-E_{n} T} \\
C_{3}\left(p_{z}, T, \tau ; z_{3}\right) & =V_{3}\left\langle\mathcal{N}\left(-p_{z}, T_{f}\right) \mathcal{O}_{\mathrm{WL}}^{\left[\gamma_{4}\right]}\left(z_{3}, \tau\right) \overline{\mathcal{N}}\left(p_{z}, T_{0}\right)\right\rangle \\
= & V_{3} \sum_{n, n^{\prime}}\left\langle\mathcal{N} \mid n^{\prime}\right\rangle\langle n \mid \overline{\mathcal{N}}\rangle\left\langle n^{\prime}\right| \dot{\mathcal{O}}_{\mathrm{WL}}^{\left[\gamma_{4}\right]}\left(z_{3}, \tau\right)|n\rangle e^{-E_{n^{\prime}}(T-\tau)} e^{-E_{n} T}
\end{aligned}
$$

Contamination from unwanted states \& $O(3) \mapsto O_{h}^{[D]}$
$>\quad$ interpolators that best reflect properties of desired state
$\langle 0| \hat{\mathcal{O}}(\vec{p})|h(\vec{p})\rangle \gg\langle 0| \hat{\mathcal{O}}(\vec{p})\left|h^{\prime}(\vec{p})\right\rangle$
Distillation: Low-rank and non-iterative approximation of a gauge-covariant smearing kernel
M. Peardon et al., Phys. Rev. D80, 054506 (2009)

$$
J_{\sigma, n_{\sigma}}=e^{\sigma \nabla^{2}}=\sum_{\lambda} e^{-\sigma \lambda}|\lambda\rangle\langle\lambda| \quad \square(\vec{x}, \vec{y} ; t)_{a b}=\sum_{k=1}^{R_{\mathcal{D}}} \xi_{a}^{(k)}(\vec{x}, t) \xi_{b}^{(k) \dagger}(\vec{y}, t)
$$

$$
\begin{aligned}
C_{m n}(t) & =\sum_{\vec{x}, \vec{y}}\langle 0| \mathcal{O}_{m}(t, \vec{x}) \mathcal{O}_{n}^{\dagger}(0, \vec{y})|0\rangle \\
& \equiv \operatorname{Tr}\left[\Phi_{m}(t) \otimes \tau(t, 0) \tau(t, 0) \tau(t, 0) \otimes \Phi_{n}(0)\right]
\end{aligned}
$$

Wick contractions factorize distillation space

$$
\text { "Perambulators" } \quad \tau_{\alpha \beta}^{k l}\left(t_{f}, t_{0}\right)=\xi^{(k) \dagger}\left(t_{f}\right) M_{\alpha \beta}^{-1}\left(t_{f}, t_{0}\right) \xi^{(l)}\left(t_{0}\right)
$$

$$
\text { "Elementals" } \quad \Phi_{\mu \nu \sigma \sigma}^{(i, j, k)}(t)=\epsilon^{a b c}\left(\mathcal{D}_{1} \xi^{(i)}\right)^{a}\left(\mathcal{D}_{2} \xi^{(j)}\right)^{b}\left(\mathcal{D}_{3} \xi^{(k)}\right)^{c}(t) S_{\mu \nu \sigma}
$$

$\Xi_{\alpha \beta}^{(l, k)}\left(T_{f}, T_{0} ; \tau, z_{3}\right)=\sum_{\vec{y}} \xi^{(l) \dagger}\left(T_{f}\right) D_{\alpha \sigma}^{-1}\left(T_{f}, \tau ; \vec{y}+z_{3} \hat{z}\right)\left[\gamma^{4}\right]_{\sigma \rho} \Phi_{\hat{z}}^{(f)}\left(\left\{\vec{y}+z_{3} \hat{z}, \vec{y}\right\}\right) D_{\rho \beta}^{-1}\left(\tau, T_{0} ; \vec{y}\right) \xi^{(k)}\left(T_{0}\right)$
\quad Unpolarized PDFs

Nucleon Interpolators with Distillation

Excited-state contamination

> optimize operator/state overlaps - saturate correlation functions at early temporal
separations
Generic light-quark nucleon interpolator smeared with distillation

Dirac structure/covariant derivatives
Discretized continuum-like interpolators of definite permutational symmetries

$$
\mathcal{O}_{B}=\left(\mathcal{F}_{\mathcal{P}(\mathrm{F})} \otimes \mathcal{S}_{\mathcal{P}(\mathrm{S})} \otimes \mathcal{D}_{\mathcal{P}(\mathrm{D})}\right)\left\{q_{1} q_{2} q_{3}\right\} \quad\left(N_{M} \otimes\left(\frac{1}{2}^{+}\right)_{M}^{1} \otimes D_{L=1, A}^{[2]}\right)^{J^{P}=\frac{1_{2}^{+}}{2}} \equiv N^{2} P_{A} \frac{1}{2}^{+}
$$

R. Edwards, et. al., Phys. Rev. D84, 074508 (2011)
(Generally) Continuum spins reducible under octahedral group

Canonical subductions

$>$ spinors/derivatives combined into object of definite J^{P}

$$
\mathcal{O}_{n \Lambda, r}^{\{J\}}=\sum_{m} S_{n \Lambda, r}^{J, m} \mathcal{O}^{\{J, m\}}
$$

Helicity subductions

$>\quad$ boost breaks O_{h}^{D} symmetry to little groups

$$
\left[\mathcal{O}^{J^{P}, \lambda}(\vec{p})\right]^{\dagger}=\sum_{m} \mathcal{D}_{m, \lambda}^{(J)}(R)\left[O^{J^{P}, m}(\vec{p})\right]^{\dagger}
$$

$>$ subduce into little groups

$$
\left[\mathcal{O}_{\lambda, \mu}^{J^{p},|\lambda|}(\vec{p})\right]^{\dagger}=\sum_{\hat{\lambda}= \pm|\lambda|} S_{\hat{\lambda}, \mu}^{\tilde{S}_{1}, \hat{\lambda}}\left[\mathbb{O}^{J^{p}, \hat{\lambda}}(\vec{p})\right]^{\dagger}
$$

Unpolarized Pseudo-ITD: Lattice Implementation

JLab/WM/LANL 2+1 Flavor Isotropic Lattices

ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	β	c_{SW}	$L^{3} \times T$	N_{cfg}
E 1	$0.094(1)$	$358(3)$	6.3	1.205	$32^{3} \times 64$	349

> isovector combination only
[Unpolarized] Short-distance factorization

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\left\{\delta(1-u)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(\frac{e^{2 \gamma_{E}+1} z^{2} \mu^{2}}{4}\right) B(u)+L(u)\right]\right\} \mathcal{Q}\left(u \nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

High-momenta essential
C. S. Bali et al. Phys. Rev. D93, 094515 (2016)
CE, R. Edwards, K. Orginos, D. Richards, PRD 103 (2021) 3, 034502

$$
\xi_{ \pm}^{(k)}(\vec{z}, t)=e^{i \overrightarrow{\zeta_{ \pm}} \cdot \vec{z}} \xi^{(k)}(\vec{z}, t)
$$

excited-state suppression
L. Maiani et al., Nucl. Phys. B293 (1987)
C. Bouchard et al., Phys. Rev. D 96, no. 1, 014504 (2017)

$$
R_{\mathrm{fit}}\left(p_{z}, z_{3} ; T\right)=\mathcal{A}+M_{4}\left(p_{z}, z_{3}\right) T+\mathcal{O}\left(e^{-\Delta E T}\right)
$$

Parameters/Statistics

ID	$N_{\text {vec }}$	$N_{\text {srcs }}$	T / a	$p_{z} \times\left(\frac{2 \pi}{L}\right)$	z / a
E1	64	4	$4,6, \cdots, 14$	$0, \pm 1, \cdots, \pm 6$	$0, \pm 1, \cdots, \pm 12, \cdots$
			$0.38, \cdots, 1.32 \mathrm{fm}$	$0,0.41, \cdots, 2.47 \mathrm{GeV}$	$0,0.094, \cdots, 1.13 \mathrm{fm}$

$$
\begin{aligned}
& B(u)=\left(\frac{1+u^{2}}{1-u}\right)+ \\
& \ldots \ldots \ldots \ldots \cdot \ldots \cdot \ldots \cdot \ldots \cdot \ldots \cdot(u)=\left[4 \frac{\ln (1-u)}{1-u}-2(1-u)\right]_{+}
\end{aligned}
$$

$$
R\left(p_{z}, z_{3} ; T\right)=\sum_{\tau / a=1}^{T-1} \frac{C_{3}\left(p_{z}, T, \tau ; z_{3}\right)}{C_{2}\left(p_{z}, T\right)}
$$

Selected Unpolarized Matrix Elements

CE, R. Edwards, C. Kallidonis et al., JHEP 11 (2021) 148

Unpolarized loffe-time Pseudo-Distribution

Efficacy of Distillation

$$
N_{\mathrm{cfg}}=417 \quad N_{\mathrm{src}}=8 \quad N_{\zeta}=5
$$

$$
N_{\mathrm{inv}} / \mathrm{cfg} \simeq 8.6 \mathrm{k}
$$

CE, R. Edwards, C. Kallidonis et al. JHEP 11 (2021) 148 [Distillation]

$$
\begin{gathered}
N_{\text {cfg }}=349 \quad N_{\text {src }}=4 \quad N_{\zeta}=3 \\
N_{\text {inv }} / \mathrm{cfg} \simeq 16 \mathrm{k}
\end{gathered}
$$

Parameterizing the Unknown PDF

Jacobi (hypergeometric) polynomials

$$
P_{n}^{(\alpha, \beta)}(z)=\frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)} \sum_{j=0}^{n}\binom{n}{j} \frac{\Gamma(\alpha+\beta+n+j+1)}{\Gamma(\alpha+j+1)}\left(\frac{z-1}{2}\right)^{j}
$$

Flexibility of PDF functional form captured without bias via $\left\{\Omega_{n}^{(\alpha, \beta)}\right\}$

$$
f_{q / h}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} C_{q, n}^{(\alpha, \beta)} \Omega_{n}^{(\alpha, \beta)}(x)
$$

[^1]A convenient change of variables: $\quad z \mapsto 1-2 x$

$$
\Omega_{n}^{(\alpha, \beta)}(x)=\sum_{j=0}^{n} \underbrace{\frac{\Gamma(\alpha+n+1)}{\frac{\Gamma!\Gamma(\alpha+\beta+n+1)}{}\binom{n}{j} \frac{(-1)^{j} \Gamma(\alpha+\beta+n+j+1)}{\Gamma(\alpha+j+1)}} x^{j}}_{\omega_{n, j}^{(\alpha, \beta)}}
$$

Regularization via Orthogonal Polynomials

III-posed (pseudo-)ITD/PDF matching relation: $\mathfrak{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} d x \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) f_{q / h}\left(x, \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k}$
(α, β) lose meaning when inf. \# terms included

$$
\begin{aligned}
& \sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{v}\left(x \nu, z^{2} \mu^{2}\right) x^{\alpha}(1-x)^{\beta} \Omega_{n}^{(\alpha, \beta)}(x) \\
& \quad=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} c_{2 k}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+1, \beta+1) \nu^{2 k} \\
& \eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{+}\left(x \nu, z^{2} \mu^{2}\right) x^{\alpha}(1-x)^{\beta} \Omega_{n}^{(\alpha, \beta)}(x) \\
& \quad=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} c_{2 k+1}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+2, \beta+1) \nu^{2 k+1}
\end{aligned}
$$

Regularization via Orthogonal Polynomials

III-posed (pseudo-)ITD/PDF matching relation: (α, β) lose meaning when inf. \# terms included

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} d x \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) f_{q / h}\left(x, \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k}
$$

$$
\begin{aligned}
& \sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{\mathrm{v}}\left(x \nu, z^{2} \mu^{2}\right) x^{\alpha}(1-x)^{\beta} \Omega_{n}^{(\alpha, \beta)}(x) \\
& \quad=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} c_{2 k}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+1, \beta+1) \nu^{2 k} \\
& \eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{+}\left(x \nu, z^{2} \mu^{2}\right) x^{\alpha}(1-x)^{\beta} \Omega_{n}^{(\alpha, \beta)}(x) \\
& \\
& \quad=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} c_{2 k+1}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+2, \beta+1) \nu^{2 k+1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{R e} \mathfrak{M}_{\mathrm{fit}}\left(\nu, z^{2}\right)=\sum_{n=0}^{\infty} \sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right) C_{\mathrm{v}, n}^{l t(\alpha, \beta)}+\frac{a}{|z|} \sum_{n=1}^{\infty} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{a z(\alpha, \beta)} \\
&+ z^{2} \Lambda_{\mathrm{QCD}}^{2} \sum_{n=1}^{\infty} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{t 4(\alpha, \beta)}+z^{4} \Lambda_{\mathrm{QCD}}^{4} \sum_{n=1}^{\infty} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{t 6}(\alpha, \beta)
\end{aligned}
$$

$$
\mathfrak{I m}_{\mathfrak{m}} \mathfrak{M}_{\mathrm{fit}}\left(\nu, z^{2}\right)=\sum_{n=0}^{\infty} \eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right) C_{+, n}^{l t(\alpha, \beta)}+\frac{a}{|z|} \sum_{n=0}^{\infty} \eta_{0, n}^{(\alpha, \beta)}(\nu) C_{+, n}^{a z(\alpha, \beta)}
$$

1. scan over truncation orders

$$
+z^{2} \Lambda_{\mathrm{QCD}}^{2} \sum_{n=0}^{\infty} \eta_{0, n}^{(\alpha, \beta)}(\nu) C_{+, n}^{t 4(\alpha, \beta)}+z^{4} \Lambda_{\mathrm{QCD}}^{4} \sum_{n=0}^{\infty} \eta_{0, n}^{(\alpha, \beta)}(\nu) C_{+, n}^{t 6(\alpha, \beta)}
$$

a. search for optimal expansion coefficients for each
2. establish polynomial hierarchy
a. preference given to low-order polynomials
b. restrict x-space contaminating distributions to be sub-leading to leading-twist PDF
c. Bayesian priors (gaussian)

Jacobi polynomial basis are only non-linear terms Separable non-linear optimization \rightarrow variable projection
G. Golub and V. Pereyra, SIAM Journal on Numerical Analysis 10, 413 (1973)

Optimal Fit for Unpolarized Valence Quark PDF

Unpolarized Valence Quark PDF and Leading-Twist ITD

$f_{q_{\mathrm{v}} / N}\left(x, \mu^{2}\right)_{J}=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{n_{l t}} C_{\mathrm{v}, n}^{(\alpha, \beta)} \Omega_{n}^{(\alpha, \beta)}(x)$
$\mathcal{O}(\operatorname{corr})_{J}=x^{\alpha}(1-x)^{\beta} \sum_{n=1}^{n_{\text {corr }}} C_{\mathbf{v}, n}^{\operatorname{corr}(\alpha, \beta)} \Omega_{n}^{(\alpha, \beta)}(x)$

Parameterized Higher-Twist Contamination (Unpol.)

$\mathfrak{R e} \mathfrak{M}^{t 4, t 6}\left(\nu, z^{2}\right) \equiv z^{2} \Lambda_{\mathrm{QCD}}^{2} \sum_{n=1}^{n_{t 4}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{t 4}(\alpha, \beta)+z^{4} \Lambda_{\mathrm{QCD}}^{4} \sum_{n=1}^{n_{t 6}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{t 6}(\alpha, \beta)$

Wilson Line Cuts \& Higher-Twist Variability (Unpol.)

$\mathfrak{R e} \mathfrak{M}^{t 4, t 6}\left(\nu, z^{2}\right) \equiv z^{2} \Lambda_{\mathrm{QCD}}^{2} \sum_{n=1}^{n_{t 4}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{t 4}(\alpha, \beta)+z^{4} \Lambda_{\mathrm{QCD}}^{4} \sum_{n=1}^{n_{t 6}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{t 6}(\alpha, \beta)$

Short-Distance Tension

Dramatic effect of a discretization correction

$\left\{n_{l t}, n_{a z}, n_{t 4}, n_{t 6}\right\}_{\mathrm{v} /+}$	α	β	$C_{\mathrm{v}, 0}^{l t}$	$C_{\mathrm{v}, 1}^{l t}$	$C_{\mathrm{v}, 2}^{l t}$	$C_{\mathrm{v}, 3}^{l t}$
$\{4,1,3,2\}_{\mathrm{v}}$	$-0.209(147)$	$1.330(415)$	$1.606(257)$	$0.427(752)$	$-0.880(409)$	$-0.675(122)$
$\{4,0,3,2\}_{\mathrm{v}}$	$-0.376(37)$	$2.032(496)$	$1.340(165)$	$0.335(261)$	$-0.125(100)$	$-0.651(140)$
$C_{\mathrm{v}, 1}^{a z}$	$C_{\mathrm{v}, 1}^{t 4}$	$C_{\mathrm{v}, 2}^{t 4}$	$C_{\mathrm{v}, 3}^{t 4}$	$C_{\mathrm{v}, 1}^{t 6}$	$C_{\mathrm{v}, 2}^{t 6}$	χ_{r}^{2}
$-0.279(48)$	$0.052(53)$	$-0.371(106)$	$-0.407(122)$	$-0.045(37)$	$0.228(52)$	$2.620(345)$
-	$-0.090(52)$	$-0.112(77)$	$0.274(99)$	$0.011(39)$	$0.397(84)$	$45.68(1.72)$

Visualize scale dependence in reduced pseudo-ITD via mock
pseudo-PDF fit

$$
\mathfrak{R e} \mathfrak{M}_{\mathrm{fit}}\left(\nu, z^{2}\right)=\int_{0}^{1} d x \cos (x \nu) \mathfrak{R e} \mathcal{P}\left(x, z^{2} ; \alpha, 3\right)
$$

Evolution/matching with pseudo-PDF fit
$\mathfrak{R e} \mathcal{Q}\left(\nu, \mu^{2}\right)=\mathfrak{R e} \mathfrak{M}\left(\nu, z^{2}\right)+\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u \mathfrak{P}\left(u \nu, z^{2} ; \alpha, \beta=3\right)\left[\ln \left(\frac{z^{2} \mu^{2} e^{2 \gamma_{E}+1}}{4}\right) B(u)+L(u)\right]$

Short-Distance Tension

Dramatic effect of a discretization correction

$\left\{n_{l t}, n_{a z}, n_{t 4}, n_{t 6}\right\}_{\mathrm{v} /+}$	α	β	$C_{\mathrm{v}, 0}^{l t}$	$C_{\mathrm{v}, 1}^{l t}$	$C_{\mathrm{v}, 2}^{l t}$	$C_{\mathrm{v}, 3}^{l t}$
$\{4,1,3,2\}_{\mathrm{v}}$	$-0.209(147)$	$1.330(415)$	$1.606(257)$	$0.427(752)$	$-0.880(409)$	$-0.675(122)$
$\{4,0,3,2\}_{\mathrm{v}}$	$-0.376(37)$	$2.032(496)$	$1.340(165)$	$0.335(261)$	$-0.125(100)$	$-0.651(140)$
$C_{\mathrm{v}, 1}^{a z}$	$C_{\mathrm{v}, 1}^{t 4}$	$C_{\mathrm{v}, 2}^{t 4}$	$C_{\mathrm{v}, 3}^{t 4}$	$C_{\mathrm{v}, 1}^{t 6}$	$C_{\mathrm{v}, 2}^{t 6}$	χ_{r}^{2}
$-0.279(48)$	$0.052(53)$	$-0.371(106)$	$-0.407(122)$	$-0.045(37)$	$0.228(52)$	$2.620(345)$
-	$-0.090(52)$	$-0.112(77)$	$0.274(99)$	$0.011(39)$	$0.397(84)$	$45.68(1.72)$

Visualize scale dependence in reduced pseudo-ITD via mock
pseudo-PDF fit

$$
\mathfrak{R e} \mathfrak{M}_{\mathrm{fit}}\left(\nu, z^{2}\right)=\int_{0}^{1} d x \cos (x \nu) \mathfrak{R e} \mathcal{P}\left(x, z^{2} ; \alpha, 3\right)
$$

Evolution/matching with pseudo-PDF fit
$\mathfrak{R e} \mathcal{Q}\left(\nu, \mu^{2}\right)=\mathfrak{R e} \mathfrak{M}\left(\nu, z^{2}\right)+\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u \mathfrak{P}\left(u \nu, z^{2} ; \alpha, \beta=3\right)\left[\ln \left(\frac{z^{2} \mu^{2} e^{2 \gamma_{E}+1}}{4}\right) B(u)+L(u)\right]$

$$
\mathfrak{P}\left(u \nu, z^{2} ; \alpha, \beta\right)={ }_{2} F_{3}\left(\frac{1+\alpha}{2}, \frac{2+\alpha}{2} ; \frac{1}{2}, \frac{5+\alpha}{2}, \frac{6+\alpha}{2} ;-\frac{\nu^{2}}{4}\right)
$$

$>\quad$ redo two-parameter fits to matched ITD

Spin-Dependent PDFs from Pseudo-Distributions

Quark Helicity Distribution

Helicity asymmetry of partons within hadronic state of definite helicity

Known primarily from polarized inclusive DIS (ex. JLAB - CLAS)

$$
\begin{aligned}
& W^{\mu \nu}=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\frac{\hat{P}^{\mu} \hat{P}^{\nu}}{P \cdot q} F_{2}\left(x, Q^{2}\right) \\
& \quad+i \epsilon^{\mu \nu \alpha \beta} \frac{q_{\alpha} S_{\beta}}{P \cdot q} g_{1}\left(x, Q^{2}\right)+i \epsilon^{\mu \nu \alpha \beta} \frac{q_{\alpha}\left(S_{\beta}-P_{\beta} \frac{S \cdot q}{P \cdot q}\right)}{P \cdot q} g_{2}\left(x, Q^{2}\right)+\text { P.V. }
\end{aligned}
$$

$$
g_{1}\left(x, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\left[\Delta q\left(x, Q^{2}\right)+\Delta \bar{q}\left(x, Q^{2}\right)\right]
$$

Afford insight into proton spin puzzle [EMC] Phys.Lett.B 206 (1988) 364

$$
S_{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x \sum_{u, d, s}\left[\Delta q\left(x, Q^{2}\right)+\Delta \bar{q}\left(x, Q^{2}\right)\right]
$$

Fragmentation Functions

$$
g_{1}^{h}\left(x, Q^{2}, z\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\left[\Delta q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)+\Delta \bar{q}\left(x, Q^{2}\right) D_{\frac{q}{q}}^{h}\left(z, Q^{2}\right)\right]
$$

E. Nocera et al., Nuc.Phys.B 887 (2014) 276-308

Towards the Helicity PDF from Pseudo-Distributions

A matrix element of a

$$
\nu \equiv p \cdot z
$$

distinct character

$$
M^{\alpha 5}(p, z)=\langle h(p)| \bar{\psi}(z) \gamma^{\alpha} \gamma^{5} \Phi_{\tilde{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle=-2 m_{N} S^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)-2 i m_{N} p^{\alpha}(z \cdot S) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{3} z^{\alpha}(z \cdot S) \mathcal{R}\left(\nu, z^{2}\right)
$$

Leading-twist helicity PDF defined in terms of $k^{-}, \mathbf{k}_{\perp}$ integrated parton correlator

$$
p^{\alpha}=\left(p^{+}, \frac{m_{h}^{2}}{2 p^{+}}, \mathbf{0}_{\perp}\right)
$$

$$
z^{\alpha}=\left(0, z^{-}, \mathbf{0}_{\perp}\right) \quad \alpha=+
$$

$$
\begin{array}{r}
\text { [Helicity] loffe-time Distribution (ITD) } \\
\left\{\mathcal{M}\left(p^{+} z^{-}, 0\right)+i p^{+} z^{-} \mathcal{N}\left(p^{+} z^{-}, 0\right)\right\}_{\mu^{2}} \equiv \Delta Q\left(\nu, \mu^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} g_{q / h}\left(x, \mu^{2}\right)
\end{array}
$$

$$
\mathcal{Y}\left(p^{+} z^{-}, 0\right)_{\mu^{2}}
$$

$$
\mathcal{Y}\left(p_{z} z_{3}, z_{3}^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} \Delta \mathcal{P}\left(x, z_{3}^{2}\right)
$$

$$
\begin{gathered}
p^{\alpha}=\left(0_{\perp}, p_{z}, E\right) \quad S^{\alpha}=\left(0_{\perp}, S_{z}, S_{4}\right) \\
z^{\alpha}=\left(0_{\perp}, z_{3}, 0\right) \quad \alpha=3
\end{gathered}
$$

[Helicity] Ioffe-time Pseudo-distribution (pseudo-ITD)
Generalization of light-cone helicity
PDF onto space-like intervals;
Lorentz covariant parton momentum
fraction

Helicity Pseudo-ITD: Lattice Implementation

A slightly altered version of the reduced distribution:

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{M_{3}(p, z) / M_{3}(p, 0)}{M_{3}(0, z) / M_{3}(0,0)}=\frac{\left.\mathcal{Y}\left(\nu, z^{2}\right) \mathcal{Y}(0,0)\right|_{p=z=0}+\left.m_{N}^{2} z^{2} \mathcal{R}\left(\nu, z^{2}\right) \mathcal{Y}(0,0)\right|_{p=z=0}}{\left.\left.\mathcal{Y}(\nu, 0)\right|_{z=0} \mathcal{Y}\left(0, z^{2}\right)\right|_{p=0}+\left.\left.m_{N}^{2} z^{2} \mathcal{R}\left(0, z^{2}\right)\right|_{p=0} \mathcal{Y}(\nu, 0)\right|_{z=0}}
$$

[Helicity] Short-distance factorization

$$
B(u)=\left(\frac{1+u^{2}}{1-u}\right)_{+}
$$

$$
\therefore L(u)=\left[4 \frac{\ln (1-u)}{1-u}-4(1-u)\right]_{+}
$$

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\left\{\delta(1-u)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(\frac{e^{2 \gamma_{B}+1} z^{2} \mu^{2}}{4}\right) B(u)+L(u)\right]\right\} \Delta Q\left(u \nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

High-momenta (remains) essential
C. S. Bali et al. Phys. Rev. D93, 094515 (2016)

CE, R. Edwards, K. Orginos, D. Richards, PRD 103 (2021) 3, 034502

$$
\begin{aligned}
& \xi_{ \pm}^{(k)}(\vec{z}, t) \equiv e^{i \vec{\zeta}_{ \pm} \cdot \vec{z}} \xi^{(k)}(\vec{z}, t) \\
& \vdots - \pm 2 \cdot \frac{2 \pi}{L} \hat{z}
\end{aligned}
$$

$$
R\left(p_{z}, z_{3} ; T\right)=\sum_{\tau / a=1}^{T-1} \frac{C_{3}\left(p_{z}, T, \tau ; z_{3}\right)}{C_{2}\left(p_{z}, T\right)}
$$

$$
R_{\mathrm{fit}}\left(p_{z}, z_{3} ; T\right)=\mathcal{A}+M_{4}\left(p_{z}, z_{3}\right) T+\mathcal{O}\left(e^{-\Delta E T}\right)
$$

A Preliminary Fit for Helicity Valence Quark PDF

Helicity Valence Quark PDF and Leading-Twist ITD

Other Preliminary Helicity Valence Quark Fits

Other Preliminary Helicity Valence Quark Fits

Systematic error of Jacobi polynomial truncations \& cuts on Wilson line/momenta to be explored within a model averaging framework*

Quark Transversity Distribution

Distribution of transversely polarized quarks w/in hadron polarized transverse to (inf.) momentum
> only chiral-odd twist-2 collinear PDF (decouples from inclusive DIS)

- additional process needed to accommodate parton helicity flip (i.e. another chiral-odd fn. to access from exp.)
- challenging to accomplish experimentally - limited info. on dist.
$>$ numerous candidate 2-hadron processes

$$
\begin{array}{ll}
p^{\uparrow} p^{\uparrow} \rightarrow \ell \ell^{\prime} X & \text { (Ralston-Soper ' } 79 \text {) } \\
e p^{\uparrow} \rightarrow e^{\prime} \pi X & \text { (Colins } 93 \text {) } \\
p p^{\uparrow} \rightarrow \Lambda^{\uparrow} X & \text { (De Florian et al, '98) } \\
e p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right) X
\end{array}
$$

Dearth of data sensitive to transversity PDF (and non-conservation of tensor change)

$$
g_{T} \equiv \int_{0}^{1} d x\left[h_{1}^{q}(x)-h_{1}^{\bar{q}}(x)\right]
$$

$>\quad$ ideal for study from LQCD

C. Alexandrou et al., Phys.Rev.D 98 (2018) 9, 091503
C. Alexandrou et al., Phys.Rev.D 99 (2019) 11, 114504

Thorough investigation of systematic effects (eg. excited-states, non-pert. renormalization, FT truncation \& matching schemes)

Transversity PDF at phys. pion mass using quasi-distributions \& LaMET

Towards the Transversity PDF from Pseudo-Distributions

A matrix element of a distinct character

$$
\begin{aligned}
& M^{\alpha \beta}(p, z)=\langle h(p)| \bar{\psi}(z) i \sigma^{\alpha \beta} \gamma^{5} \Phi_{\underset{z}{(f)}}(\{z, 0\}) \psi(0)|h(p)\rangle= \\
& 2\left(p^{\alpha} S_{\perp}^{\beta}-p^{\beta} S_{\perp}^{\alpha}\right) \mathcal{M}\left(\nu, z^{2}\right)+2 i m_{N}^{2}\left(z^{\alpha} S_{\perp}^{\beta}-z^{\beta} S_{\perp}^{\alpha}\right) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{2}\left(z^{\alpha} p^{\beta}-z^{\beta} p^{\alpha}\right)\left(z \cdot S_{\perp}\right) \mathcal{R}\left(\nu, z^{2}\right)
\end{aligned}
$$

Generalization of light-cone transversity PDF onto space-like intervals; Lorentz covariant parton momentum fraction

$$
\begin{aligned}
p^{\beta}=\left(\mathbf{0}_{\perp}, p_{z}, E\right) & S^{\beta}=\left(S_{\perp}, 0, S_{4}\right) \\
\alpha=4 \quad \beta=i & z^{\beta}=\left(\mathbf{0}_{\perp}, z_{3}, 0\right)
\end{aligned}
$$

[Transversity] loffe-time Distribution (ITD)

$$
\mathcal{M}\left(p^{+} z^{-}, 0\right)_{\mu^{2}} \equiv \delta Q\left(\nu, \mu^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} h_{q / h}\left(x, \mu^{2}\right)
$$

[Transversity] Ioffe-time Pseudo-distribution (pseudo-ITD)

$$
\mathcal{M}\left(p_{z} z_{3}, z_{3}^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} \delta \mathcal{P}\left(x, z_{3}^{2}\right)
$$

Transversity Pseudo-ITD: Lattice Implementation

Standard reduced distribution, but rotational
symmetry allows for further matelem sampling...

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{M_{4 i}(p, z) / M_{4 i}(p, 0)}{M_{4 i}(0, z) / M_{4 i}(0,0)}
$$

[Transversity] Short-distance factorization

$$
\begin{aligned}
& B(u)=\left(\frac{2 u}{1-u}\right)_{+} \\
& \ldots \ldots \ldots \ldots \ldots \cdot L(u)=4\left[\frac{\ln (1-u)}{1-u}\right]_{+}
\end{aligned}
$$

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\left\{\delta(1-u)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(\frac{e^{2 \gamma_{D}+1} z^{2} \mu^{2}}{4}\right) B(u)+L(u)\right]\right\} \delta Q\left(u \nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)
$$

CE, J. Karpie, N. Karthik et al., Phys.Rev.D 105 (2022) 034507 \& V. Braun, Y. Ji, A. Vladimirov, JHEP 10087 (2021)

High-momenta (still) essential
C. S. Bali et al. Phys. Rev. D93, 094515 (2016)

$$
\xi_{ \pm}^{(k)}(\vec{z}, t) \equiv e^{i \vec{\zeta}_{ \pm} \cdot \vec{z}^{(k)}} \xi^{(k)}(\vec{z}, t)
$$

CE, R. Edwards, K. Orginos, D. Richards, PRD 103 (2021) 3, 034502

2-state fits to two- and three-point correlation functions favored over summation method
$>$ ratio still exposes matrix element

$$
R\left(p_{z}, z_{3} ; T\right)=\sum_{\tau / a=1}^{T-1} \frac{C_{3}\left(p_{z}, T, \tau ; z_{3}\right)}{C_{2}\left(p_{z}, T\right)}
$$

Bare Transversity Matrix Elements

Matrix elements extracted from ratio of 2-state fits

$$
\begin{gathered}
C_{2}\left(p_{z}, T\right)=\left\langle\mathcal{N}\left(-p_{z}, T_{f}\right) \overline{\mathcal{N}}\left(p_{z}, T_{0}\right)\right\rangle=\sum_{n}\left|\mathcal{A}_{n}\right|^{2} e^{-E_{n} T} \\
C_{3}\left(p_{z}, T, \tau ; z_{3}\right)=V_{3}\left\langle\mathcal{N}\left(-p_{z}, T_{f}\right) \dot{\mathcal{O}}_{\mathrm{WL}}^{\left[\gamma_{4}\right]}\left(z_{3}, \tau\right) \overline{\mathcal{N}}\left(p_{z}, T_{0}\right)\right\rangle \\
=V_{3} \sum_{n, n^{\prime}}\left\langle\mathcal{N} \mid n^{\prime}\right\rangle\langle n \mid \overline{\mathcal{N}}\rangle\left\langle n^{\prime}\right| \mathcal{O}_{\mathrm{WL}}^{\left[\gamma_{4}\right]}\left(z_{3}, \tau\right)|n\rangle e^{-E_{n^{\prime}}(T-\tau)} e^{-E_{n} T}
\end{gathered}
$$

missed shortest separation data

$$
T / a \in[6,14] \quad \tau \in[2 a,(T-2) a] \longleftarrow \text { Used in analysis }
$$

Matrix elements consistently determined across momenta

Transversity Reduced Pseudo-ITD

Pheno.-type parameterization
$>$ convolution as Taylor series in loffe-time
$>$ plus leading discretization/higher-twist

$$
g_{T}^{-1} h_{ \pm}(x)=N_{ \pm} x^{\alpha_{ \pm}}(1-x)^{\beta_{ \pm}}\left(1+\gamma_{ \pm} \sqrt{x}+\delta_{ \pm} x\right)
$$

Estimating Model Dependence

Jacobi basis (α, β) selected from 4-param PDF ansatz
$>\quad$ expand ansatz in basis per jackknife bin mean/error estimates of Jacobi expansion coeffs.

- form Bayesian priors

Analogous strategy as before, w/ trivially different Wilson coefficients
$\sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} c_{2 k}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+1, \beta+1) \nu^{2 k}$ $\eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} c_{2 k+1}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+2, \beta+1) \nu^{2 k+1}$

Akaike Information Criterion (AIC)
H. Akaike, IEEE Transactions on Automatic Control, vol.19, no.6, 716-723 (1974)
$>$ models w/ too many parameters disfavored
$>$ combine model estimates per jackknife bin into single mean/error estimator
$h_{ \pm}^{\mathrm{AIC}}(x)=\sum_{m \in \mathrm{fit}} w^{(m)} h_{ \pm}^{(m)}(x) \quad \Delta_{ \pm}^{\mathrm{AIC}}(x)=\sqrt{\sum_{m \in \mathrm{fit}} w^{(m)}\left[h_{ \pm}^{(m)}(x)-h_{ \pm}^{\mathrm{AIC}}(x)\right]^{2}}$

$$
w^{(m)}=\frac{e^{-\frac{1}{2} \operatorname{AIC}(m)}}{\sum_{n \in \mathrm{fit}} e^{-\frac{1}{2} \operatorname{AIC}(n)}}
$$

Final Transversity Quark Distributions

[JAM20]: SIDIS + transverse SSAs via SIA (e+e-) \& pp-collisions
[JAM20] J. Cammarota, L. Gamberg, Z.-B. Kang et al., Phys.Rev.D 102054002 (2020)
[JAM18]: 1st global analysis of nucleon quark transversity distribution
H.-W. Lin, W. Melnitchouk, A. Prokudin et al., Phys.Rev.Lett. 120152502 (2018)
$>$ single-transverse spin asymmetries in pion production off proton/deuteron targets [PDF \& Collins FFs]
$>$ constraints from lattice QCD

Impact on phenomenology if isolated transversity PDF were included in a global analysis?

See CE, J. Karpie, N. Karthik et al., Phys.Rev.D 105 (2022) 034507
for an equivalent analysis using Mellin moments

Twist-2 PDF Checklist

ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	β	c_{SW}	$L^{3} \times T$	$N_{\text {cfg }}$
E1	$0.094(1)$	$358(3)$	6.3	1.205	$32^{3} \times 64$	349
E2	$0.094(1)$	$278(4)$	6.3	1.205	$32^{3} \times 64$	259
E3	$0.091(2)$	$170(5)$	6.3	1.205	$48^{3} \times 96$	1370

ID	$N_{\text {vec }}$	$N_{\text {srcs }}$	T / a	$p_{z} \times\left(\frac{2 \pi}{L}\right)$	z / a
E2	64	4	$4,6, \cdots, 14$	$0, \pm 1, \cdots, \pm 6$	$0, \pm 1, \cdots, \pm 8$
			$0.38, \cdots, 1.32 \mathrm{fm}$	$0,0.41, \cdots, 2.47 \mathrm{GeV}$	$0,0.094, \cdots, 0.75 \mathrm{fm}$

Results will enable extrapolation to physical pion mass

Genprops on lattice ensembles w/ larger volumes and finer lattice spacings underway

		$f_{q / h}\left(x, \mu^{2}\right)$	$g_{q / h}\left(x, \mu^{2}\right)$	$h_{q / h}\left(x, \mu^{2}\right)$
E1	Single local interpolating field 3 phase smearings	published	preliminary	published
E2	Single local interpolating field 3 phase smearings	Analyzing	preliminary	Analyzing
E3	Expanded interpolator basis (16 ops) 5-7 phase smearings	ongoing	ongoing	Ongoing

A Multi-Dimensional Description of Hadronic Structure

"How does subatomic matter organize itself and what phenomena emerge?"
"What are the static and dynamical properties of matter?"

Generalized Parton Distributions (GPDs)

A. V. Radyushkin, Phys. Rev.D56, 5524 (1997)
X.-D. Ji, Phys. Rev.D55, 7114 (1997)
M. Diehl, Phys. Rept.388, 41 (2003),

Variety of exclusive channels/observables
Off-forward Integrated parton correlations
$>\quad$ DVCS/DVMP Eur.Phys.J.A 52 (2016) 6, 157; Eur.Phys.J.A 52 (2016) 6, 151 Eur.Phys.J.A 52 (2016) 6, 158

- e.g. E12-06-113, E12-11-003 -

JLab's Hall A [HRS] \& B [CLAS12]

GPDs of fundamental importance
> unify familiar PDFs/FFs + impact parameter densities

$$
\int_{-1}^{1} \mathrm{~d} x\{H, \tilde{H}, E, \tilde{E}\}^{q}(x, \xi, t)=\left\{F_{1}, F_{2}, G_{A}, G_{P}\right\}^{q}(t)
$$

$>$ quark/gluon EMT appears in OPE of off-forward matrix element of two external currents - forward limit of GFFs

$$
J_{q}=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x\left[H^{q}(x, \xi, t=0)+E^{q}(x, \xi, t=0)\right]
$$

"[GPDs] will transform the current picture

Recent Efforts from Lattice QCD to Resolve GPDs

Generalized Quasi-distributions (quasi-GPDs) - generally zero skewness
$>$ (mostly) nucleon
C. Alexandrou et al., Phys.Rev.Lett 125 (2020) 26, 262001
C. Alexandrou et al., Phys.Rev.D 105 (2022) 3, 034501
pion
J.-W. Chen et al., Nucl.Phys.B 952 (2020) 114940

LaMET has been extended to off-forward regime, giving access to unpolarized/helicity/transversity GPDs
X. Ji et al., Phys. Rev. D 92, 014039 (2015)
X. Xiong and J.H. Zhang, Phys. Rev. D 92, no.5, 054037 (2015) Y.S. Liu et al., Phys. Rev. D 100, no.3, 034006 (2019)

Mellin moments of GPDs at leading-twist
> Off-forward Compton amplitude from
Feynman-Hellman techniques

GFFs of the nucleon - total quark angular momentum/transverse spin densities
G. Bali et al., Phys.Rev.D 100, 014507 (2019)

Pseudo-Distributions in the Off-Forward Regime

$$
\begin{aligned}
& \begin{array}{c}
\text { A. Radyushkin, Phys. Rev. D100, 116011 (2019) } \\
\text { A. Radyushkin, arXiv: Int.J.Mod.Phys.A 35 (2020) 05, 2030002 }
\end{array} \\
& \mathbb{M}^{\alpha}\left(p_{f}, p_{i}, z\right) \equiv\left\langle N\left(p_{f}\right)\right| \bar{\psi}(-z / 2) \frac{\tau^{3}}{2} \gamma^{\alpha} W(-z / 2, z / 2 ; A) \psi(z / 2)\left|N\left(p_{i}\right)\right\rangle \\
&= e^{i\left(\nu_{i}-\nu_{f}\right) / 2}\left\langle N\left(p_{f}\right)\right| \bar{\psi}(0) \gamma^{\alpha} W(0, z ; A) \psi(z)\left|N\left(p_{i}\right)\right\rangle \\
&=\left\langle\left\langle\gamma^{\alpha}\right\rangle\right\rangle M\left(\nu_{f}, \nu_{i}, t, z^{2}\right)+\langle\langle\mathbb{1}\rangle\rangle z^{\alpha} N\left(\nu_{f}, \nu_{i}, t, z^{2}\right)+\mathcal{O}\left(\Delta^{\alpha}\right)-\operatorname{terms}
\end{aligned} \quad\left\{\begin{array}{l}
\langle\langle\Gamma\rangle\rangle=\bar{u}_{N}\left(p_{f}\right) \Gamma u_{N}\left(p_{i}\right) \\
\nu_{k}=p_{k} \cdot z \\
t=\Delta^{2}=\left(p_{i}-p_{f}\right)^{2}
\end{array}\right.
$$

$$
\alpha=+\quad z^{\alpha}=\left(0, z^{-}, \mathbf{0}_{\perp}\right) \quad \xi=\frac{p_{i}^{+}-p_{f}^{+}}{p_{i}^{+}+p_{f}^{+}}
$$

A first implementation in Lattice QCD:

$$
\begin{gathered}
\alpha=4 \\
p_{i}^{\alpha}=\left(\mathbf{p}_{\perp}^{i}, p_{z}^{i}, E_{i}\right) \\
p_{f}^{\alpha}=\left(\mathbf{p}_{\perp}^{f}, p_{z}^{f}, E_{f}\right) \\
z^{\alpha}=\left(\mathbf{0}_{\perp}, z_{3}, 0\right)
\end{gathered}
$$

$$
\xi=\frac{\left(p_{i} z\right)-\left(p_{f} z\right)}{\left(p_{i} z\right)+\left(p_{f} z\right)}
$$

$$
\nu=\frac{\nu_{f}+\nu_{i}}{2}
$$

ID	$N_{\text {vec }}$	$N_{\text {srcs }}$	T / a	$p_{z} \times\left(\frac{2 \pi}{L}\right)$	z / a
E1	64	4	$4,6, \cdots, 14$	$0, \pm 1, \cdots, \pm 6$	$0, \pm 1, \cdots, \pm 12, \cdots$
			$0.38, \cdots, 1.32 \mathrm{fm}$	$0,0.41, \cdots, 2.47 \mathrm{GeV}$	$0,0.094, \cdots, 1.13 \mathrm{fm}$

Zero skewness limit particularly interesting
$>\quad$ mapping skewness/momentum transfer dependence in isolation a challenge on a discrete lattice
$>\quad$ verify extrapolation of GPD to zero momentum transfer \rightarrow PDF

Same set of inversions as
+19 Momentum Transfers
forward case
$>$ slightly different ratio to remove unknown overlap factors, time dependencies
$R_{\Gamma}\left(\vec{p}_{f}, \vec{p}_{i} ; T, \tau\right)=\frac{C_{3 \mathrm{pt}}^{\Gamma}\left(\vec{p}_{f}, \vec{p}_{i} ; T, \tau\right)}{C_{2 \mathrm{pt}}\left(\vec{p}_{f}, T\right)} \sqrt{\frac{C_{2 \mathrm{pt}}\left(\vec{p}_{i} ; T-\tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{f} ; \tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{f} ; T\right)}{C_{2 \mathrm{pt}}\left(\vec{p}_{f} ; T-\tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{i} ; \tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{i} ; T\right)}}$

An Unpolarized Double loffe-Time Distribution Slice

Next Steps in Constructing the Pseudo-GITD

Consistent treatment of operator constructions/subductions
$\left\langle\vec{p}_{f}, \Lambda_{f}, \mu_{f}\right| j^{\Lambda_{\gamma}, \mu_{\gamma}}\left|\vec{p}_{i}, \Lambda_{i}, \mu_{i}\right\rangle=\sum_{\lambda_{f}, \lambda_{\gamma}, \lambda_{i}} S_{J_{f}, \lambda_{f}}^{\Lambda_{f}, \mu_{f}}\left[S_{J_{\gamma}=1, \lambda_{\gamma}}^{\Lambda_{\gamma}, \mu_{\gamma}}\right]^{*}\left[S_{J_{i}, \lambda_{i}}^{\Lambda_{i}, \mu_{i}}\right]^{*} \sum_{\ell} \mathcal{K}_{\ell}\left(h_{f}, J_{f}\left[\lambda_{f}, \vec{p}_{f}\right] ; h_{i}, J_{i}\left[\lambda_{i}, \vec{p}_{i}\right]\right) A_{\ell}\left(\nu_{f}, \nu_{i} ; t ; z^{2}\right)$

Matching the pseudo-GITD onto the GITD
$\widetilde{\mathcal{I}}\left(\nu, \xi, t, \mu^{2}\right)=\widetilde{\mathfrak{M}}\left(\nu, \xi, t, z^{2}\right)+\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u \widetilde{\mathfrak{M}}\left(u \nu, \xi, t, z^{2}\right)\left\{\ln \left[\frac{e^{2 \gamma_{E}+1}}{4} z^{2} \mu^{2}\right] B_{G}(u, \bar{u}, \xi, \nu)+L_{G}(u, \bar{u}, \xi, \nu)\right\}+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)$
$e^{-i \xi \nu} \mathcal{M}\left(\nu, \xi, t, z^{2}\right)=\int_{-1}^{1} d x e^{i x \nu} \mathcal{G}\left(x, \xi, t, z^{2}\right)$

$$
\left[\frac{2 u}{1-u}\right]_{+} \cos (\bar{u} \xi \nu)+\frac{\sin (\bar{u} \xi \nu)}{\xi \nu}-\frac{1}{2} \delta(\bar{u})
$$

GPD Parameterizations

$$
\int_{-1}^{1} d x\left\{\begin{array}{c}
H^{q} \\
\widetilde{H}^{q}
\end{array}\right\}(x, \xi, t)=\left\{\begin{array}{c}
F_{1}^{q} \\
G_{A}^{q}
\end{array}\right\}(t)
$$

Functional dependence constrained by:
Reduction to elastic form factors
Recover twist-2 PDFs in forward limit
> polynomiality

$$
\int_{-1}^{1} d x x^{n}\left\{\begin{array}{l}
H^{q} \\
E^{q}
\end{array}\right\}(x, \xi, t)=\sum_{i=0 ; \text { even }}^{n}(2 \xi)^{i}\left\{\begin{array}{l}
A_{n+1, i}^{q} \\
B_{n+1, i}^{q}
\end{array}\right\}(t) \pm \bmod (n, 2)(2 \xi)^{n+1} C_{n+1}^{q}(t)
$$

D. Müller, D. Robaschik, B. Geyer et al., Fortsch. Phys. 42, 101 (1994)
A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997)
X. D. Ji, Phys. Rev. Lett. 78, 610 (1997)

But how should these important distributions be parameterized?
$>\quad$ kernel relation (cf. jacobi polynomials for PDFs) - model bias?
$>$ Neural-networks?
H. Dutrieux et al., arXiv:2112.10528 [hep-ph]
L. D. Debbio, et al., arXiv: 2010.03996 [hep-ph]
K. Cichy, L. D. Debbio, T. Giani, JHEP 10 (2019) 137

Double-distributions
$>$ Double-distributions (DDs)
A. V. Radyushkin, Phys. Rev. D 59, 014030 (1999)
D. Müller et al., Fortschr.Phys. 42, 101 (1994)

- initial momenta/momentum transfer treated equally (cf. FT of parton momentum fraction)
- DDs generate GPDs which automatically satisfy polynomiality

$$
\int_{-1}^{1} d x\left\{\begin{array}{l}
E^{q} \\
\widetilde{E}^{q}
\end{array}\right\}(x, \xi, t)=\left\{\begin{array}{l}
F_{2}^{q} \\
G_{P}^{q}
\end{array}\right\}(t)
$$

$$
H^{q / h}(x, 0,0)=f_{q / h}(x) \quad \widetilde{H}^{q / h}(x, 0,0)=\Delta f_{q / h}(x)
$$

$$
\begin{aligned}
& \begin{aligned}
\left\langle p^{\prime}\right| \bar{\psi}(-z / 2) \not \approx \psi(z / 2)|p\rangle & \left.\right|_{z^{2}=0}=\bar{u}\left(p^{\prime}\right) \not \approx u(p) \int d \beta d \alpha e^{-i \beta(P \cdot z)+i \alpha(\Delta \cdot z) / 2} f_{q}(\beta, \alpha, t)
\end{aligned} \\
& \\
& \\
& \text { sfer }
\end{aligned}
$$

$$
|\beta|-|\alpha| \leq 1
$$

Closing Remarks

Hadronic structure accessible from certain lattice calculable matrix elements
$>$ short-distance factorization
Twist-2 Nucleon valence (plus) quark PDFs
> distillation (+phasing) - precise pseudo-ITDs \& PDFs

- phased distillation now central to HadStruc
> systematic effects can be reliably addressed
> Impact on phenomenology
- combine data w/ a global analysis of exp. cross sections?
- Soffer bound?

GPDs - a vast/open landscape wherein LQCD can provide guidance

HadStruc Collaboration

Robert Edwards, CE, Nikhil Karthik, Jianwei Qiu, David Richards, Eloy Romero, Frank Winter ${ }^{[1]}$

$$
\text { Balint Joó }{ }^{[2]}
$$

Carl Carlson, Chris Chamness, Tanjib Khan, Christopher Monahan, Kostas Orginos, Raza Sufian ${ }^{[3]}$

Wayne Morris, Anatoly Radyushkin ${ }^{[4]}$

$$
\text { Joe Karpie }{ }^{[5]}
$$

Savvas Zafeiropoulos ${ }^{[6]}$
Yan-Qing Ma ${ }^{[7]}$
Jefferson Lab ${ }^{[1]}$, Oak Ridge ${ }^{[2]}$, William and Mary ${ }^{[3]}$, Old Dominion University
${ }^{[4]}$, Columbia University ${ }^{[5]}$, Aix Marseille University ${ }^{[6]}$, Peking University ${ }^{[7]}$

Unpolarized loffe-time Distribution

Quasi-GPD Matching (Example: Transversity)

$C_{G}\left(\sigma^{3 j} ; x, \xi, \frac{p_{3}}{\mu}, \frac{p_{3}}{\left(\mu_{0}\right)_{3}}, r\right)=\delta(x-1)+\frac{\alpha_{s} C_{F}}{2 \pi} \begin{cases}G_{1}\left(\sigma^{3 j} ; x, \xi\right)_{+} & x<-\xi \\ G_{2}\left(\sigma^{3 j} ; x, \xi, p_{3} / \mu\right)_{+} & |x|<\xi \\ G_{3}\left(\sigma^{3 j} ; x, \xi, p_{3} / \mu\right)_{+} & \xi<x<1 \\ -G_{1}\left(\sigma^{3 j} ; x, \xi\right)_{+} & x>1\end{cases}$

$$
-\frac{\alpha_{s} C_{F}}{2 \pi}\left|\frac{p_{3}}{\left(\mu_{0}\right)_{3}}\right| f_{\mathcal{P}_{T}}\left(\sigma^{3 j} ; \frac{p_{3}}{\left(\mu_{0}\right)_{3}}(x-1)+1, r\right)_{+}+\frac{\alpha_{s} C_{f}}{4 \pi} \delta(x-1) \ln \left(\frac{\mu^{2}}{\left(\mu_{0}\right)_{3}^{2}}\right)
$$

$$
G_{1}\left(\sigma^{3 j} ; x, \xi\right)=-\frac{x+\xi}{(x-1)(1+\xi)} \ln \frac{x-1}{x+\xi}+(\xi \rightarrow-\xi)
$$

$$
\begin{aligned}
& G_{2}\left(\sigma^{3 j} ; x, \xi\right)=\frac{x+\xi}{(1-x)(1+\xi)}\left[\ln \frac{4(1-x)^{2}(x+\xi) p_{3}^{2}}{\xi-x) \mu^{2}}-1\right]+\frac{2 \xi}{1-\xi^{2}} \ln \frac{\xi-x}{1-x} \\
& G_{3}\left(\sigma^{3 j} ; x, \xi\right)=\frac{2\left(x-\xi^{2}\right)}{(1-x)\left(1-\xi^{2}\right)}\left[\ln \frac{4 \sqrt{x^{2}-\xi^{2}}(1-x) p_{3}^{2}}{\mu^{2}}-1\right]+\frac{\xi}{1-\xi^{2}} \ln \frac{x+\xi}{x-\xi}
\end{aligned}
$$

Nucleon Dispersion

Discretized continuum-like interpolators of definite permutational symmetries

$$
\left(N_{M} \otimes\left(\frac{1}{2}^{+}\right)_{M}^{1} \otimes D_{L=1, A}^{[2]}\right)^{J^{P}=\frac{1^{2}}{+}} \equiv N^{2} P_{A} \frac{1}{2}^{+} \quad N^{(2 S+1)} L_{\mathcal{P}} J^{P}
$$

$$
\begin{aligned}
\mathcal{B}_{\vec{p}=\overrightarrow{0}}=\left\{N^{2} S_{S} \frac{1}{2}^{+}\right. & , N^{2} S_{M} \frac{1}{2}^{+}, N^{2} S_{S}^{\prime} \frac{1^{+}}{2}, N^{2} P_{A} \frac{1^{+}}{2}, \\
& \left.N^{2} P_{M} M_{2}^{1^{+}}, N^{4} P_{M} \frac{1}{2}^{+}, N^{4} D_{M} \frac{1}{2}^{+}\right\}
\end{aligned}
$$

Dominate low-lying spectrum
R. Edwards et al., Phys. Rev. D84, 074508 (2011) J. Dudek \& R. Edwards, Phys. Rev. D85, 054016 (2012)

$$
\begin{aligned}
& \mathcal{B}_{\vec{p} \neq 0}=\left\{N^{2} S_{\frac{1}{2}}{ }^{\frac{1}{2}}, N^{2} S_{M} \frac{1}{2}^{+}, N^{2} P_{A} \frac{1}{2}^{+}, N^{2} P_{M} \frac{1}{2}^{+},\right. \\
& N^{4} P_{M} \frac{1}{2}^{+}, N^{4} D_{M} \frac{1^{+}}{2}, N^{4} S_{M^{\frac{3}{2}}}{ }^{+}, N^{2} D_{S_{2}^{2}}{ }^{\frac{5^{+}}{}}, \\
& N^{2} P_{M} \frac{1}{2}^{-}, N^{4} P_{M} \frac{1}{2}^{-}, N^{2} P_{M} \frac{3}{2}^{-}, N^{4} P_{M} \frac{3}{2}^{-}, \\
& \left.N^{4} P_{M} \frac{5^{-}}{2}, N^{-2} D_{S} \frac{3^{\frac{3}{2}}}{}, N^{4} D_{M} \frac{3^{\frac{3}{2}}}{}, N^{2} D_{M} \frac{3^{\frac{3}{2}}}{}{ }^{+}\right\}
\end{aligned}
$$

Nucleon Dispersion

Discretized continuum-like interpolators of definite permutational symmetries

$$
\left(N_{M} \otimes\left(\frac{1}{2}^{+}\right)_{M}^{1} \otimes D_{L=1, A}^{[2]}\right)^{J^{P}=\frac{1^{2}}{2}} \equiv N^{2} P_{A} \frac{1}{2}^{+} \quad N^{(2 S+1)} L_{\mathcal{P}} J^{P}
$$

$$
\begin{aligned}
\mathcal{B}_{\vec{p}=\overrightarrow{0}}=\{ & N^{2} S_{S} S_{\frac{1}{2}}, \\
& , N^{2} S_{M} \frac{1}{2}^{+}, N^{2} S_{S}^{\prime} \frac{1}{2}^{+}, N^{2} P_{A} \frac{1^{+}}{2}, \\
& \left.N^{2} P_{M} \frac{1^{1}}{2}, N^{4} P_{M} \frac{1}{2}^{+}, N^{4} D_{M} \frac{1}{2}^{+}\right\}
\end{aligned}
$$

R. Edwards et al., Phys. Rev. D84, 074508 (2011)

Dominate low-lying spectrum J. Dudek \& R. Edwards, Phys. Rev. D85, 054016 (2012)

$$
\begin{aligned}
& \mathcal{B}_{\vec{p} \neq 0}=\left\{N^{2} S_{S} \frac{1}{2}^{+}, N^{2} S_{M} \frac{1}{2}^{+}, N^{2} P_{A} \frac{1}{2}^{+}, N^{2} P_{M} \frac{1}{2}^{+},\right. \\
& N^{4} P_{M} \frac{1}{2}^{+}, N^{4} D_{M} \frac{1^{+}}{2}, N^{4} S_{M} \frac{3}{2}^{+}, N^{2} D_{S} \frac{5}{2}^{\frac{5}{}}{ }^{+}, \\
& N^{2} P_{M} \frac{1}{2}^{-}, N^{4} P_{M} \frac{1}{2}^{-}, N^{2} P_{M} \frac{3}{2}^{-}, N^{4} P_{M} \frac{3}{2}^{-}, \\
& \left.N^{4} P_{M} \frac{5^{-}}{2}, N^{-2} D_{S} \frac{3^{\frac{3}{2}}}{}, N^{4} D_{M} \frac{3^{\frac{3}{2}}}{}, N^{2} D_{M} \frac{3^{\frac{3}{2}}}{}{ }^{+}\right\}
\end{aligned}
$$

Broken parity - high spin states relevant
Repeat energy extractions with and without phasing
$\rightarrow \quad$ GEVP: precision/agreement with continuum dispersion

[^0]: A. Radyushkin, Phys.Rev.D 96 (2017) 3, 034025

[^1]: J. Karpie, K. Orginos, A. Radyushkin et al., JHEP 11 (2021) 024

