# A BETTER ANGLE ON HADRON TRANSVERSE MOMENTUM DISTRIBUTIONS AT THE EIC

Zhiquan Sun (MIT) In collaboration with Anjie Gao, Johannes Michel, and Iain Stewart 2209.11211

Jefferson Lab, November 7th, 2022



#### PUNCHLINE

 A new observable q<sub>\*</sub> for SIDIS to study TMDs with order of magnitude improvement in experimental resolution!



#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

# QCD IS HARD

- Nonperturbative: coupling  $\alpha_s(Q)$  explodes at low energy perturbative calculation fails
- Confinement: we see no free quarks or gluons can not measure their properties directly



 Hadronization: we do not fully understand the real-time dynamic of how quarks and gluons become bound states



#### ONE OF OUR BEST TOOLS: COLLIDERS!

#### $e^+e^-$ (LEP expt.)

#### $e^-p$ (Jefferson lab)

#### pp (Large Hadron Collider)





Dihadron in e+e-

е

# $P \xrightarrow{P_a} P_b$

**Drell-Yan** 

Zhiquan Sun (MIT)

**Semi-Inclusive DIS** 

#### Parton Distribution Functions & Fragmentation Functions

- Parton distribution function (PDF): probability of finding a parton *i* with collinear momentum fraction *x* inside a hadron *H*
- Fragmentation function (FF): probability that a parton *i* with collinear momentum fraction *z* hadronizes to a hadron *H*



 Can factorize cross section of a physical process (e.g. SIDIS) in terms of PDFs and FFs

 $\sigma \sim f_{i/p}(x) D_{h/j}(z)$  (more later)

Zhiquan Sun (MIT)

## TRANSVERSE MOMENTUM DEPENDENT PDFs/FFs

- Same interpretation, but now the distribution also depends on the transverse momentum k<sub>T</sub> of the parton
- Describes the 3D structure of hadrons
- Can be rigorously defined by matrix elements of operators





Zhiquan Sun (MIT)

### TMDs in Different Processes



- TMDs are **universal** across processes
- Two scales  $q_T, Q$  allows natural power counting

#### SPIN-DEPENDENT TMDs

• 8TMD PDFs with polarizations, similar for TMD FFs



## WHY STUDY TMDS

- Understand the 3D structure of hadrons
- Understand the nonperturbative structures of QCD as a field theory (confinement, hadronization, ...)
- Improve QCD theory uncertainty in other processes (W mass measurement, ...)
- Precision in experiments allow discovery of new physics (Higgs transverse momentum spectrum, ...)

#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

#### **SIDIS SETUP**

#### **Semi-Inclusive DIS**



$$e^{-}(\ell) + N(P) \rightarrow e^{-}(\ell') + h(P_h) + X$$

Interested in the transverse momentum of the outgoing hadron with respect to the photon,  $P_{hT}$ 

SIDIS cross section is studied extensively at HERMES, COMPASS, RHIC, and JLab

> The upcoming Electron-Ion Collider (EIC) promises
>  improved precision

## How TMDs are studied

• In the limit  $P_{hT}/z = q_T \ll Q$ , can factorize the cross section into hard function and TMDs:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}y\mathrm{d}z\mathrm{d}^{2}\vec{P}_{hT}} = \sigma_{0}2z\sum_{f,\bar{f}}\mathcal{H}_{f}(Q^{2})\int_{0}^{\infty}\frac{\mathrm{d}b_{T}b_{T}}{2\pi}e^{i\vec{b}_{T}\cdot\vec{q}_{T}}f_{1f}(x,b_{T})D_{1f}(z,b_{T})\times\left[1+\mathcal{O}(\frac{q_{T}^{2}}{Q^{2}})\right]$$
(unpolarized)

TMDs have perturbative and nonperturbative parts:

Zhiquan Sun (MIT)

#### **LEADING POWER FACTORIZATION THEOREM**

X.-d. Ji, J.-P. Ma, and F. Yuan arXiv:hep- ph/0404183, arXiv:hep-ph/0405085 A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders, and M. Schlegel, arXiv:hep-ph/0611265

Factorization theorem relates cross sections to TMDs

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}^{2}\vec{P}_{hT}} = \sigma_{0}\Big\{W_{UU,T} + \lambda_{e}S_{L}\sqrt{1-\epsilon^{2}}W_{LL} + \epsilon\cos(2\phi_{h})W_{UU}^{\cos(2\phi_{h})} + S_{L}\epsilon\sin(2\phi_{h})W_{UL}^{\sin(2\phi_{h})} + S_{T}\sin(\phi_{h}-\phi_{S})W_{UT,T}^{\sin(\phi_{h}-\phi_{S})} + \epsilon S_{T}\left[\sin(\phi_{h}+\phi_{S}) \times W_{UT}^{\sin(\phi_{h}+\phi_{S})} + \sin(3\phi_{h}-\phi_{S})W_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right] + \lambda_{e}S_{T}\sqrt{1-\epsilon^{2}}\cos(\phi_{h}-\phi_{S})W_{LT}^{\cos(\phi_{h}-\phi_{S})}\Big\}$$

$$\begin{split} \lambda_e \text{ lepton beam helicity} \\ S^{\mu} &= (0, S_T \cos \phi_S, S_T \sin \phi_S, -S_L) \\ \text{nucleon spin vector in Trento} \\ \text{frame} \quad y &= P \cdot q / P \cdot \ell \\ \epsilon &= (1 - y) / (1 - y + y^2 / 2) \\ \sigma_0 &\equiv \alpha^2 \pi y \kappa_{\gamma} / [z Q^2 (1 - \varepsilon)] \end{split}$$

Structure functions



Notation: M.A. Ebert, A. Gao, and I.W. Stewart, arXiv:2112.07680

For example,

$$W_{UU}^{\cos(2\phi_h)} = -2z \int_0^\infty \frac{\mathrm{d}b_T b_T}{2\pi} \mathcal{I} \left[ \mathcal{H} \tilde{h}_1^{\perp(1)} \tilde{H}_1^{\perp(1)} \right] J_2(b_T P_{hT}/z)$$
  
where  $\mathcal{I} \left[ \mathcal{H} \tilde{g}^{(n)} \tilde{D}^{(m)} \right] \equiv (M b_T)^n (-M_h b_T)^m \sum_f \mathcal{H}_f \tilde{g}_f^{(n)} \tilde{D}_f^{(m)}$   
Zhiquan Sun (MIT)

#### CHALLENGES OF STUDYING TMDS

- In SIDIS, need to reconstruct  $\vec{q}$  from  $\vec{\ell'}$  to measure  $\vec{P}_{hT}$
- **Momentum** resolution at detectors introduces large uncertainty in reconstruction of  $P_{hT} \sim \Lambda_{\rm QCD} \ll Q \sim |\vec{\ell'}|$



• As an example, consider SIDIS kinematics.

$$|\vec{\ell'}| = (20 \pm 0.5) \text{ GeV}$$
  
 $|\vec{P}_{hT}| = (1 \pm 0.5) \text{ GeV}$ 

which is 50% uncertainty!

#### CHALLENGES OF STUDYING TMDS

- In SIDIS, need to reconstruct  $\vec{q}$  from  $\vec{\ell'}$  to measure  $\vec{P}_{hT}$
- **Momentum** resolution at detectors introduces large uncertainty in reconstruction of  $P_{hT} \sim \Lambda_{\text{QCD}} \ll Q \sim |\vec{\ell'}|$



## CHALLENGES OF STUDYING TMDS

- In SIDIS, neε
- Momentum uncertainty

Promise: New observable q<sub>\*</sub> gives Order of Magnitude Improvement in Resolution!



#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

(In the light target limit  $M \ll Q$ )

- Angular resolution at detectors is much better!
- Notice the acoplanarity angle  $\tan \phi_{acop} = -P_{h,y}/P_{h,x} \propto \sin \phi_h P_{hT}$ in the target rest frame



 Want to construct an optimized observable that only uses angular measurements



- Identify  $P_{hT}/z = q_T$  is the parton transverse momentum
- Only need to write the **prefactor**  $1/Q\sqrt{1-y}$  in terms of angles as well

• Consider the in-plane leading power kinematics  $(\vec{P}_h \text{ collinear to } \vec{q})$ 



- In terms of  $\theta_h$ ,  $\theta_e$ , we find  $y = 1 - \frac{\sin \theta_h}{\cos \alpha}$  $Q^2 = (E_\ell^{\text{rest}})^2 \left[ \frac{\sin^2 \theta_e}{\cos^2 \alpha} - \left( 1 - \frac{\sin \theta_h}{\cos \alpha} \right)^2 \right]$
- Can easily translate  $\theta_h, \theta_e$ into EIC lab frame angles/ rapidities

• Boosting to EIC lab frame and continue working in the  $M \ll Q$  limit, we find in terms of lab frame rapidities  $\eta_h, \eta_e$ :  $\Delta \eta = \eta_h - \eta_e$ 



$$y = \frac{1}{1 + e^{\Delta \eta}} + \mathcal{O}(\lambda^2)$$
$$Q^2 = (2E_N)^2 \frac{e^{\eta_e + \eta_h}}{1 + e^{\Delta \eta}} + \mathcal{O}(\lambda)$$

$$\Box > Q\sqrt{1-y} = 2E_N \frac{e^{\eta_h}}{1+e^{\Delta\eta}} + \mathcal{O}(\lambda)$$

*E<sub>N</sub>* is the energy of the nucleus in the EIC frame, which is known exactly, the rest of the quantities are all angular!

plane

(In the light target limit  $M \ll Q$ )

 Now combine all the ingredients, we have the definition of our new observable  $q_*$  $q_* \equiv 2E_N \frac{e^{\eta_h}}{1 + e^{\eta_h - \eta_e}} \tan \phi_{\text{acop}}^{\text{EIC}}$  $\tan \phi_{\text{acop}}^{\text{rest}} = \frac{\sin \phi_h P_{hT}}{zQ\sqrt{1-y}} + \mathcal{O}(\lambda^2)$  $Q\sqrt{1-y} = 2E_N \frac{e^{\eta_h}}{1+e^{\Delta\eta}} + \mathcal{O}(\lambda)$ •  $q_*$  has a simple Trento frame **EIC** frame y leading power  $x^{\scriptscriptstyle{ ext{EIC}}}$ relation, which  $\overline{P}_{hT}$ allows for easy  $ec{P}_h$ target factorization: rest frame  $\phi_{
m acop}^{
m rest}$  $q_* \stackrel{\text{LP}}{=} -\sin\phi_h \frac{P_{hT}}{P_{hT}}$  $\phi_{
m acop}^{
m {}_{
m EIC}}$ N  $\boldsymbol{x}$ ō lepton

(more later on power corrections)

Zhiquan Sun (MIT)

#### A DIMENSIONLESS VARIABLE

• Can also define a dimensionless observable  $\phi_{\text{SIDIS}}^*$ similar to  $\phi_{\eta}^*$  in unpolarized Drell-Yan [Banfi et al., EPJC 71, 1600 (2011), arXiv:1009.1580]



### A DIMENSIONLESS VARIABLE

•  $\phi_{\eta}^*$  in unpolarized Drell-Yan known to eliminate experimental systematics



[ATLAS, EPJC 80 (2020) 7, 616, 1912.02844]

#### **SPECTRUM COMPARISON**

•  $q_*$  is a signed observable

$$q_* \equiv 2E_N \frac{e^{\eta_h}}{1 + e^{\eta_h - \eta_e}} \tan \phi_{\text{acop}}^{\text{EIC}}$$
$$q_* \stackrel{\text{LP}}{=} - \sin \phi_h \frac{P_{hT}}{z}$$

- Even and peak at 0 for unpolarized spectrum
- Single spin asymmetry (SSA) introduces odd contribution



#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

#### **FACTORIZATION FOR** $q_*$ CROSS SECTION

 Recall the leading power decomposition of SIDIS cross section in terms of structure functions:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}^2\vec{P}_{hT}} = \sigma_0 \Big\{ W_{UU,T} + \lambda_e S_L \sqrt{1-\epsilon^2}\,W_{LL}$  $\lambda_{\rho}$  lepton beam helicity  $+ \epsilon \cos(2\phi_h) W_{UU}^{\cos(2\phi_h)} + S_L \epsilon \sin(2\phi_h) W_{UL}^{\sin(2\phi_h)}$  $S^{\mu} = (0, S_T \cos \phi_S, S_T \sin \phi_S, -S_L)$  $+ S_T \sin(\phi_h - \phi_S) W_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon S_T \left[ \sin(\phi_h + \phi_S) \right]$ nucleon spin vector in Trento frame  $\epsilon = (1 - y)/(1 - y + y^2/2)$  $\times W_{UT}^{\sin(\phi_h + \phi_S)} + \sin(3\phi_h - \phi_S) W_{UT}^{\sin(3\phi_h - \phi_S)}$  $\sigma_0 \equiv \alpha^2 \pi y \kappa_{\gamma} / [z Q^2 (1 - \varepsilon)]$  $+\lambda_e S_T \sqrt{1-\epsilon^2} \cos(\phi_h - \phi_S) W_{LT}^{\cos(\phi_h - \phi_S)} \Big\}$ • We can insert the leading power relationship  $q_* \stackrel{\text{LP}}{=} - \sin \phi_h \frac{P_{hT}}{r}$ 

• We can insert the leading power relationship  $q_* =$ as a  $\delta$ -function and do the  $\overrightarrow{P}_{hT}$  integral to get the factorization theorem for  $q_*$  cross section

#### **FACTORIZATION FOR** $q_*$ CROSS SECTION

 As an example, consider the contribution from  $W_{UU}^{\cos(2\phi_h)} = -2z \int_0^\infty \frac{\mathrm{d}b_T b_T}{2\pi} \mathcal{I} \Big[ \mathcal{H} \,\tilde{h}_1^{\perp(1)} \tilde{H}_1^{\perp(1)} \Big] J_2(b_T P_{hT}/z)$ • The contribution to  $\frac{\mathrm{d}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}a_*}$  from  $\epsilon\cos(2\phi_h)W_{UU}^{\cos(2\phi_h)}$  is  $\int_{0}^{\infty} \mathrm{d}P_{hT} P_{hT} \int_{0}^{2\pi} \mathrm{d}\phi_{h} \,\delta(q_{*} + \sin\phi_{h}P_{hT}/z) \,\epsilon \cos(2\phi_{h})$  $\leftarrow \qquad \text{Inserting } \delta\text{-function} \\ \& \text{ integrate over } d^2 \overrightarrow{P}_{hT} \end{aligned}$  $\times (-2z) \int \frac{\mathrm{d}b_T b_T}{2\pi} \mathcal{I} \left[ \mathcal{H} \, \tilde{h}_1^{\perp(1)} \tilde{H}_1^{\perp(1)} \right] J_2(b_T P_{hT}/z)$  $= -\frac{2z^{3}\epsilon}{\pi} \int \mathrm{d}b_{T} \,\mathcal{I} \big[\mathcal{H}\,\tilde{h}_{1}^{\perp(1)}\tilde{H}_{1}^{\perp(1)}\big]$  $\times \int_{0}^{2\pi} \frac{\mathrm{d}\phi_H}{\sin^2\phi_I} \Theta\left(-\frac{q_*}{\sin\phi_I}\right) \cos(2\phi_h) \frac{b_T |q_*|}{2} J_2\left(\frac{b_T q_*}{\sin\phi_I}\right)$  $\leftarrow \begin{array}{c} \text{Simple nontrivial kernel} \\ \text{from } \phi_h \text{ dependence} \end{array}$  $= -\frac{2z^{3}\epsilon}{\pi} \int \mathrm{d}b_{T} \,\mathcal{I} \big[\mathcal{H}\,\tilde{h}_{1}^{\perp(1)}\tilde{H}_{1}^{\perp(1)}\big] \,\cos(q_{*}b_{T})$ where  $\mathcal{I}[\mathcal{H}\tilde{g}^{(n)}\tilde{D}^{(m)}] \equiv (Mb_T)^n (-M_h b_T)^m \sum_f \mathcal{H}_f \tilde{g}_f^{(n)} \tilde{D}_f^{(m)}$ Zhiquan Sun (MIT) 30

#### **FACTORIZATION FOR** *q*<sup>\*</sup> CROSS SECTION

• We get factorization theorem for  $q_*$  cross section in terms of standard TMD PDFs and FFs  $\lambda_e$  lepton beam helicity

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}q_*} = \frac{2z^3}{\pi}\sigma_0 \int_0^\infty \mathrm{d}b_T \left\{ \cos(q_*b_T) \left( \mathcal{I} \left[ \mathcal{H}\,\tilde{f}_1\,\tilde{D}_1 \right] \right] \right\}^{\mathcal{S}^{\mu} = (0, S_T \cos\phi_S, S_T \sin\phi_S, -S_L) \\ \operatorname{nucleon spin vector in Trentor frame} \\ -\epsilon \mathcal{I} \left[ \mathcal{H}\,\tilde{h}_1^{\perp(1)}\tilde{H}_1^{\perp(1)} \right] + \lambda_e S_L \sqrt{1 - \epsilon^2} \mathcal{I} \left[ \mathcal{H}\,\tilde{g}_{1L}\,\tilde{D}_1 \right] \right) \\ + \cos\phi_S \sin(q_*b_T) S_T \left( \mathcal{I} \left[ \mathcal{H}\,\tilde{f}_{1T}^{\perp(1)}\,\tilde{D}_1 \right] + \epsilon \mathcal{I} \left[ \mathcal{H}\,\tilde{h}_1\,\tilde{H}_1^{\perp(1)} \right] \\ + \frac{\epsilon}{4} \mathcal{I} \left[ \mathcal{H}\,\tilde{h}_{1T}^{\perp(2)}\,\tilde{H}_1^{\perp(1)} \right] \right)$$

- $-\sin\phi_S\sin(q_*b_T)\lambda_e S_T\sqrt{1-\epsilon^2}\mathcal{I}[\mathcal{H}\,\tilde{g}_{1T}^{\perp(1)}D_1]\Big\}$
- Can extract different contributions by unique\* dependence on  $q_*, \lambda_{\rho}, S^{\mu}, \epsilon$

 $S_L$ )

#### **EXTRACTING TMDs FROM FACTORIZATION**

- Practically, we take **asymmetries** with opposite beam polarizations ( $\lambda_e$ ,  $S^{\mu}$ ) and by measuring cross sections as a function of y ( $\epsilon$ )
- As an example, consider taking the double asymmetry  $q_* \rightarrow -q_*$  and  $\lambda_e \rightarrow -\lambda_e$ , we single out the contribution  $-\sin \phi_S \sin(q_* b_T) \lambda_e S_T \sqrt{1-\epsilon^2} \mathcal{I}[\mathcal{H} \tilde{g}_{1T}^{\perp(1)} \tilde{D}_1]$

which allows us to access the worm-gear T function  $\tilde{g}_{1T}^{\perp}$ 

• \*Note that the worm-gear L function  $\tilde{h}_{1L}$  drops out, and transversity and pretzelosity are degenerate:  $\epsilon S_T (\tilde{h}_1 + \tilde{h}_{1T}^{\perp}/4)$ 

#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

#### IMPROVED RESOLUTION

- Simulated in Pythia, Ø(10<sup>8</sup>)
   events, Gaussian smeared
  - EIC Yellow Report Design Requirements, arXiv:2103.05419 Momentum resolution: c:  $\sigma_p/p = 0.05 \% p/GeV \oplus 0.5 \%$ f/b: 0.05 - 0.1 % p/GeV  $\oplus$  1 - 2 % Angular resolution  $\sigma_{\theta} = \sigma_{\phi} = 0.001$
- Order of magnitude resolution improvement in the TMD region
   ( ≤ 2 GeV) from using q\*

SIDIS cuts:  

$$x > 0.001$$
  
 $0.01 < y < 0.95$   
 $z > 0.05$   
 $Q^2 > 16 \text{ GeV}^2$   
 $W^2 = (P + q)^2 > 100 \text{ GeV}^2$ 



# Statistical Sensitivity of $q_*$ vs $P_{hT}$

- We test how well our observable can **extract parameters** of a given nonperturbative model for unpolarized cross section  $\sigma_{\text{unpol}} \sim f_1(z, k_T) D_1(z, k_T)$
- Recall that the nonperturbative model enter TMDs through:

perturbative result & evolution using SCETlib

$$\tilde{f}_{1f}(x, b_T, \mu, \zeta) = \frac{\tilde{f}_{1f}(x, b^*(b_T), \mu, \zeta)}{\tilde{D}_{1f}(z, b_T, \mu, \zeta)} \frac{\tilde{f}_1^{NP}(x, b_T)}{\tilde{D}_1^{NP}(z, b_T)}$$

M. Ebert, J. Michel, F.Tackmann et. al, DESY-17-099

We use a simplified version of the MAPTMD 22 global fits

$$\begin{split} \tilde{f}_{1}^{\text{NP}} &= e^{-\omega_{1}b_{T}^{2}} \\ \tilde{D}_{1}^{\text{NP}} &= \alpha \, e^{-\omega_{2}b_{T}^{2}} + (1-\alpha)(1-\omega_{3}b_{T}^{2}) \, e^{-\omega_{3}b_{T}^{2}} \\ \text{(Fixing $x, z, Q^{2}$)} \quad \text{A. Bacchetta et. al, MAPTMD 22, arXiv:2206.07598} \end{split}$$

• Parameters  $\omega_i$  encodes the shape of TMDs at large distances

## Statistical Sensitivity of $q_*$ vs $P_{hT}$

 Use the central value and standard deviation of the global fits in MAPTMD 22 as our Gaussian prior

Zhiquan Sun (MIT)

Use Bayesian analysis to test the posterior distribution



# Statistical Sensitivity of $q_*$ vs $P_{hT}$

• Compare between using our new observable  $q_*$  and using transverse momentum  $P_{hT}$  directly:



•  $q_*$  has comparable statistical sensitivity to  $P_{hT}$ , while having a much superior resolution

#### **ROBUSTNESS AGAINST BIAS**

- Assess the robustness of the observables against systematic uncertainties using the same setup
- $P_{hT}$  is highly susceptible to momentum miscalibration,  $p_e \rightarrow (1 + \delta p_e)p_e$ while  $q_*$  is unaffected
- Comparable robustness against non-uniform detector response

$$\varepsilon(X) = 1 + \Delta \varepsilon_X \frac{X - \langle X \rangle}{\Delta X}, \Delta X = \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$$



#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

#### **POWER CORRECTIONS** (In the light target limit $M \ll Q$ )

• Consider leading corrections in  $\lambda \sim P_{hT}/(zQ)$  to  $y, Q^2$ 

$$y_* \equiv \frac{1}{1 + e^{\Delta \eta}} = y + \mathcal{O}(\lambda^2),$$
  
$$Q_*^2 \equiv \left(2E_N\right)^2 \frac{e^{\eta_e + \eta_h}}{1 + e^{\Delta \eta}} = Q^2 \left(1 - \cos \phi_h \sqrt{\frac{1}{1 - y}} \frac{P_{hT}}{zQ}\right) + \mathcal{O}(\lambda^2)$$

• For definition of  $q_*$  we can equivalently write

$$q_* \equiv Q_* \sqrt{1 - y_*} \tan \phi_{\text{acop}}^{\text{EIC}} = \left( 2E_N \frac{e^{\eta_h}}{1 + e^{\Delta \eta}} \tan \phi_{\text{acop}}^{\text{EIC}} \right)$$

• Measuring cross section in  $q_*$  experimentally allows easy reinterpretation and power correction on the theory front

#### FINITE MASS EFFECTS

- Useful when the target mass is on the same order as Q
- To leading order in  $\lambda \sim P_{hT}/(zQ)$  we have  $\gamma = \frac{2xM}{Q}$

$$\tan\phi_{\rm acop}^{\rm rest} = \frac{\sin\phi_h P_{hT}}{zQ} \sqrt{\frac{1+\gamma^2}{1-\gamma^2 y^2/4-y}} + \mathcal{O}(\lambda^2)$$

$$q_*^M \equiv -E_\ell^{\text{rest}} \frac{\left[\cos(\theta_e + \theta_h) + \cos\theta_h\right] \tan(\frac{\theta_e}{2}) \sin\theta_h}{\sin(\theta_e + \theta_h)} \ \tan\phi_{\text{acop}}^{\text{rest}} \stackrel{\text{LP}}{=} -\sin\phi_h \frac{P_{hT}}{z}$$

Can easily boost to EIC frame and use EIC frame angles

#### OUTLINE

- Motivation & introduction to TMDs
- How to study TMDs
- Construction of a new observable  $q_*$
- Factorization theorem for  $q_*$  cross section
- Experimental sensitivity and robustness
- Power corrections
- Summary

#### SUMMARY

- TMDs are interesting subjects to study and can tell us a lot about hadron structures  $q_* \equiv 2E_N \frac{e^{\eta_h}}{1 + e^{\eta_h - \eta_e}} \tan \phi_{\text{acop}}^{\text{EIC}}$
- We have proposed an angular observable  $q_*$  in SIDIS that is sensitive to TMDs and has superior experimental resolution
- We have proven factorization for the  $q_*$  cross section and shown that we may access individual polarized TMDs
- Studying  $q_*$  at EIC will allow us to push forward the understanding of hadronization and confinement

#### Thank you!

Zhiquan Sun (MIT)