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• Introduction to tensor RG (renormalization group) 


• Applications to Ising model with magnetic field, 2d O(2) model, 2d SU(2)m 
gauge theory, and 3d O(2) model with chemical potential 


• Another facet of tensors: Real-time evolution in Ising Field Theory (IFT) using 
Matrix Product States (MPS)


• Moving to quantum computing: Qubits (d=2 Hilbert space), Qumodes 
(continuous variables, infinite dimensional HS)


• Application of qubit method to understand O(3) model recently by other 
groups and our ongoing work on CV formulation. 

Outline 

Unequal parts definition - “First three/Last two >> 1” 



Different RG methods 
Various renormalization group (RG) schemes (list not exhaustive) have been introduced over 
the past 5-6 decades:  

• 	 Kadanoff’s spin blocking RG [1966] & Wilson’s RG [1975]  

• 	 Density Matrix Renormalization Group (DMRG) [White, 1992]  
   (DMRG is an extension to Wilson RG and is well-suited to all 1d systems not only restricted to impurity problems)  

•    Tensor Renormalization Group [Levin and Nave, 2007] + HOTRG [Xie et al., 2012] 

•    Tensor Network Renormalization (TNR) [Vidal et al., 2015] [related to MERA]  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But why tensors? 

•  Provides an arena to study lower-dimensional (critical and gapped) systems faster than 
any other known method available today! [2d Ising model in 15 seconds on laptop] 

•  Formulation in terms of tensors can help us study models where the usual Monte  
Carlo (MC) methods fail (such as finite-density, -term). In addition, the thermodynamic 
limit can be approached faster and partition function can be computed unlike MC.

•  Description of a quantum state in terms of tensors (MPS) can be useful to study real-
time dynamics

•  Known to play a key role in emergence of space-time via proposals like AdS/MERA 
etc.

θ
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Formulation of  tensors 

Tensor methods have both Lagrangian and Hamiltonian applications.  

•  State approach: We can approximate the ground state i.e.,  =  of a   

model with local Hamiltonian of  spins in fewer coefficients than , O(N). 

•  Action approach: We approximate the partition function using tensor networks 
considering decomposition of Boltzmann weight (truncate if necessary) and then coarse-
graining by performing successive iterations.  
 

|ψ⟩ ∑
i1,⋯,iN

Ci1,⋯,iN | i1, ⋯, iN⟩

N 2N
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Notation 
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Z O j a f

- k - o - ← a

Quick Note 1 1 of 1



Matrix Product States (MPS) 
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This talk [TRG]!  
For this talk we will restrict to the application of tensor networks when dealing with 
statistical systems in Euclidean dimensions. This amounts to evaluating Z to best possible 
accuracy. This is usually a NP (non-polynomial) hard problem. We will start with an initial 
network and then perform coarse-graining to approach the correct target theory. For 
example, the schematic representation of TRG can be shown as:
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TRG continued!  
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Improved TRG  
In its crude form as developed by Levin and Nave in 2007, this method cannot deal with 
higher dimensional systems. For that, after about fi



d = 3,4
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Simple demonstration  
We have motivated this idea of TRG but it is best if we apply it to some simple system with 
known solution. Ising model is the perfect playground for this! The exact solution is given by 
[Onsager, 1944] with critical inverse temperature β ≈ 0.440687
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15 seconds on modern laptop!



Ising with magnetic field 

But, if we introduce magentic field, the model becomes unsolvable. It is an outstanding 
open problem for more close to 80 years! Some cases for imaginary magentic field values 
are solvable due to Yang-Lee [1952] and Merlini [1974] but for general real , not much is 
known on a regular lattice. For random graph, it was solved by Kazakov and Boulatov in 
1986 by a map to Hermitian two-matrix model. If we define , then Onsager case is 

 while Merlini solution is for  

h

z = e−2βh

z = 1 z = − 1
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Ising with (real) magnetic field - Numerics
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O(2) model        RGJ, arXiv: 2004.06314

We can study the simplest spin model with continous O(2) global symmetry using these 
methods. It was studied first in 2013 by Yu et al. [1309.4963] and by Vanderstraeten et al. 
[1907.04576]. We revisit this work and improved the results by few digits of precision for 
determination of the BKT phase trasnsition. The Hamiltonian is given by: 


In order to construct the tensor representation, we decompose the Boltzmann weight using 
Jacobi-Anger expansion and integrate over -variables: θ
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O(2) model        RGJ, arXiv: 2004.06314

The -function for  = 0 ensures the conservation of U(1) charges. This model has a famous 
BKT transition corresponding to unbinding of vortex pairs. Note that in two dimensions, 
continuous symmetry cannot break due to the famous Mermin-Wagner -Hohenberg-Coleman 
theorem and hence one might expect no phase transition but the BKT transition is special 
case. The transition is from a quasi-long range ordered (QLRO) to a disordered phase. At 
some temperature, all the vortices and anti-vortices are free to move, which destroys the 
correlations between distant spins and breaks QLRO. It was the first example of a topological 
phase transition. It is of infinite order in Ehrenfest classification sense - “none of the derivatives 
of free energy is discontinuous”. 

δ h
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Results - O(2) model        RGJ, arXiv: 2004.06314
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Results - O(2) model        RGJ, arXiv: 2004.06314
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SU(2) gauge/Higgs    

Bazavov, Catterall, RGJ, U-Yockey, arXiv: 1901.11443

One of the interesting applications of tensor networks have been to study some simple gauge 
theories in two and higher dimensions. Suppose we consider the Wilson’s SU(2) lattice action 
in unitary gauge given by:  
 
                                                         


where  is the gauge coupling and  is the matter coupling. We fix to unitary gauge as 
done in earlier works by Greensite et al. [also Fradkin-Shenker-Osterwalder-Seiler (FSOS)]. 
Once we do the character (strong coupling) expansion, we can construct the initial 
tensors. However, we have to truncate over the irreps. of the SU(2) group. This truncation 
is not very well-understood and this is a major area of research. These truncations are 
also required when we want to explore quantum simulation of gauge theories using 
qubits. 


S = − βTr□ − κTrU

β κ
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SU(2) gauge/Higgs    

Bazavov, Catterall, RGJ, U-Yockey, arXiv: 1901.11443

The rank-4 initial tensor (T) can be decomposed in terms of link (A) and plaquette operators (B) 
(very similar in spirit to Kitaev’s toric code which is often prototype of QEC) as: 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Results    

Bazavov, Catterall, RGJ, U-Yockey, arXiv: 1901.11443

We studied several observables but the most important was to compute Polyakov loop 
correlator given by: . This observable is often used in lattice QCD to 
monitor confinement (area law) when . In Higgs phase, it is expected to be 
independent of . Our results are consistent with earlier MC studies done in arXiv: 1402.7124 
with hints of crossover around  
 
                                                        


C(d) ∼ exp(−βV(d))
V(d) ∝ d

d
κ ∼ 1.4
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Moving to 3d    

Though tensor methods works very well for lower-dimensional systems, it was not explored 
much for  because of several problems involved (computer time which scales like 

, memory requirements, effects of truncation etc.).  
                                                        


d ≥ 3
O(D4d−1)
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Recent development: Triad method    
In 2019, Kadoh et al. found that it is often faster to deal with not the rank-six tensor in 3d 
directly, but decompose it in terms of several rank-three tensor known as triads. This reduces 
the cost drastically and we can study some statistical systems which were more difficult 
before.  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Basic step in Triad TRG    
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Status of  3d spin systems [w tensors]    

Apart from Ising model on cubic lattice, not much had been done for Potts model or even the 
O(2) model.     


•   Ising model studied but critical exponents not yet computed!   

•   -state Potts model in the large  limit [RGJ, arXiv: 2201.01789]    

•    model at finite density [First study: RGJ, Bloch, Lohmayer, Meister, arXiv: 2105.08066]                                      


q q
O(2)
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Potts model    
We can generalize the local Hilbert dimension of Ising model by allowing for local 

 with large . This problem had been considered using Monte Carlo for 3 ≤ q 
≤ 10 however it soon becomes diffi cult. We explore this using tensor methods and could 
locate the phase transition for  10 ≤ q ≤ 20 . Note that unlike in two dimensions, there is 
no known analytic expression for Tc ( q ) . Find an expression, long outstanding problem. 
See Baxter (1982)


dim(ℋ) = q q
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3d O(2) model    
The model is well-studied by various methods such as Monte-Carlo and conformal 
bootstrap. In fact, the motivation of using tensor methods to this model is to use a third 
approach. In bootstrap, one studies the scaling dimension of charge zero scalar operator 
which is related to critical exponent as  = 1/(3 - ) while  = 2 - d . The tensor methods 
we used was good enough to study thermodynamical observables but were not accurate 
enough to compute these coefficients yet! So, matching to Monte Carlo and CB for 
scaling dimensions of operators at critical point seems several years away and would 
need some way of optimizing the triad algorithm we used or finding a much more efficient 
way of doing tensor RG in three dimensions! Very much an open problem.

                         


ν Δs α ν
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3d O(2) model - general formulation    
The action is given by:


         

                         

and the initial tensor can be written (similar to 2d case) as: 


       


        


Note that the presence of studied by usual Monte Carlo methods since the action is complex. Tensor 
networks are promising for studying these systems and those with topological -term. A very long-
term goal is to study finite-density QCD! 


      


S = − β∑j ∑2
ν=0 cos(θj − θj+ ̂ν − iμδν,0) − βh∑V

i=1 cos(θi)

Tlrudfb = IIIIII(β)eμ(u+d)Il+u+f−r−d−b(βh)

θ
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3d O(2) model - Results    
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3d O(2)- Finite  and Silver Blaze    μ
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If we consider finite- , there is a very interesting phenomenon well-studied in QCD literature 
called `silver-blaze’. For this we need to compute the particle number density as: . 
This quantity remains zero until some critical  (proportional to mass gap) if the theory is 
gapped as is 3d O(2) for  and even though  is part of partition function, it does nothing. 

                         


μ
ρ = ∂μ ln Z

μc
β < βC μ



 Real-time scattering in IFT   
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MPS approach to scattering in IFT  in progress, Milsted et al.    
With tensor network methods, we can approximate the ground state of quantum Ising 
chain with local Hamiltonian   where we take the double 
scaling limit  (corresponding to critical temp in 2d classical case). If we 
define , then the RG parameter  determines the behaviour of 
the model. Zamolodchikov found that the model is integrable for  and he computed 
the mass spectrum which consists of eight particles (three below the threshold of ) and 
five owing their stability to integrability. This model also has another integrable limit of 

 for all  . We first start with a random MPS and through imaginary time evolution, 
find the ground state of the  given above. 


H = − ∑ ZiZi+1 − hZi + gXi

h → 0, g → 1
τ = T/TC − 1 η = τ/ |h |8/15

η = 0
2m

η → ∞ τ
H
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Stable particles in  plane  in progress, Milsted et al.    h − τ
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Figure Credits: G. Delfino
Delfino, Mussardo et al, arXiv: hep-th/0507133



Spectrum at  point  E8
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Zamolodchikov's solution is the most complicated integrable model known in Physics’’ — Subir Sachdev



Spectrum close to  point  E8
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All stable particles have very specific dependence on  and we checked this using MPS 
calculations. One can also compute  and  i.e., where the particle 2 and particle 3 
becomes unstable. The data is at T=Tc. 

h
η2 η3



Real-time evolution and scattering  

35

Once we have created a MPS which is faithful representation of the ground state of 
quantum spin chain, we construct excitations on top [quasi particles] and then evolve 
them in real-time using TDVP methods [time-dependent variational principle]. TDVP is a 
very popular alternative to Trotterization with several advantages and was introduced in 
the seminal paper: 



Open questions!  
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• We know that  at two integrable points. However, we do not know how it behaves 
(interpolates) between these two limits. We can compute these close to the integrable points 
by doing perturbation theory (known as FFPT) but general regime needs support from 
numerical results. We know that close to FF,  till , and  
after that incoming energy. We see this in our results and also the agreement to FFPT. 

• What is the high-energy behaviour between this integrable points. There is a conjecture that 

 0 as  close to FF and  1 as  close to 
E8 with a transition between. We see some signs for this behaviour. There are other major 
‘complex’ issues close to E8 (resonance etc.).  
 
Note that Note that in d = 2 we can have scattering without particle production and hence 
Pprod. = 0 but it is prohibited in d > 2 by Aks theorem [S. Aks, “Proof that scattering implies 
production in quantum field theory,” Journal of Mathematical Physics (1965), 516-532.]  

|S | = 1

P11 = 1 − Pprod. = 0 E = 3m Pprod. > 0

P11 = 1 − Pprod. → E → ∞ P11 = 1 − Pprod.→ E → ∞



• Digital quantum computing: Use qubits to perform computations. There 
are three steps in general: 1) Initial state-preparation, 2) Implementing 
unitary evolution using quantum gates, 3) Measurements. 


• Analog quantum computing: Use of continuous variables (local Hilbert 
space is strictly infinite-dimensional) to carry out state preparation, time 
evolution, and measurements

Quantum computing methods 



Quantum gates 
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The Hamiltonian is given by: 


                                   


A recent paper has studied this model using digital quantum computing 
[arXiv: 2210.03679]. They found that while for , the results for ground-
state energy is reasonable using SDKs [PennyLane], it is much harder for 

. 

Ĥ =
1

2β ∑
i

L2
i − β∑

⟨i,j⟩

ni ⋅ nj,

β ≪ 1

β ≫ 1

O(3) model in 1+1-dimensions using CVs
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Studying the quadratic part of the Hamiltonian is not very useful, but for example 
studying  or  is more important. It seems that  is still better than  
because one has the cubic phase gate in the CV approach. However, there is no 
direct CV gate corresponding to quartic part [arXiv: 2002.01402] for details. One 
interesting toy model in Physics is the O(3) model, here also we run into problems 
of quartic terms as discussed in the next slide! 


                  

λϕ3 λϕ4 λϕ3 λϕ4

Interaction terms 



To study the model using CVs, we have to write the Hamiltonian in the oscillator 
basis. It turns out that we need two oscillators (qumodes) per lattice site. Though, 
the kinetic term is simple, the nearest-neighbour term is complicated. Using 
results from [Schwinger, 1962], the second term looks is quartic in combinations 
of  at site 1 and site 2. It appears to be difficult for implementation 
using CVs. Work in progress. 


                  

a, a†, b, b†

O(3) model in 1+1-dimensions using CVs



Summary    
Tensor network methods have potential to assist in various interesting problems in 
Physics. On one hand, it can efficiently reproduce the ground state of several quantum 
systems with MPS and PEPS while on the other hand it can also describe real-space RG 
in various dimensions and can help us in understanding spin models, complex action 
systems, gauge theories etc.


Looking quantum mechanically, these models and several others can be studied in future 
using qubits and qumodes which will hopefully help us understand these problems in a 
new way.               
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Van Damme et al. 1907.02474

dN → Ndχ2



arXiv:1608.02148



arXiv:1608.02148

Randomised SVD 


