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Why Pion Valence Distribution

Pion valence distribution large-x behavior an unresolved problem

C12-15-006 experiment at JLab to explore large-x behavior

Pion : lightest bound state and associated with dynamical  
chiral symmetry breaking

(C. Weiss from Theory Center)

From pQCD and different models : (1� x)2 (1� x)1or ?



Large-     region: small configuration constrained by confinement 
dynamics  

x

x

Lattice QCD can help  understanding large-     
behavior and test different models 

Threshold 
resummation 

Why Pion Valence Distribution

plot from Tianbo Liu



Calculations of Parton Distributions on the Lattice
Quasi PDFs (X. Ji, PRL 2013)

Proposed 
Matching

Pseudo-PDFs (A. Radyushkin, PLB 2017)

Feature of canceling  
 UV divergence from  

Wilson line 

Power-law UV divergence from Wilson line in the non-local operator
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Calculations of Parton Distributions on the Lattice

Hadronic tensor  (K. F. Liu, PRL 1994, PRD 200)

Position-space correlators (V. M. Braun & D. Müller, EPJ 2008 )

Inversion Method (A. Chambers, et al PRL 2017)

Quasi PDFs (X. Ji, PRL 2013)

Pseudo-PDFs (A. Radyushkin, PLB 2017)

Hadronic Lattice Cross Sections (LCSs) 
(Y. Q. Ma, J.-W. Qiu, PRL 2018)

Extensive efforts and significant achievements in recent years



What are Good Lattice “Cross Sections” (LCSs)

Single hadron matrix elements:

1. Calculable using lattice QCD with Euclidean time

2. Well defined continuum limit (          ), UV finite 
i.e. no power law divergence from Wilson line in non-local 
operator 

a ! 0

 4. Factorizable to PDFs with IR-safe hard coefficients 
     with controllable power corrections  

3. Share the same perturbative collinear divergences with PDFs

Ma & Qiu
PRL (2018)



A good theory can identify its limitations

4-point correlation function 
 is numerically expensive

Equal time current insertion : sum over all energy modes 
can saturate phase space

Use heavy-light flavor changing current to suppress  
noise from spectator propagator in a systematic way

Simple and controllable approximations to problems



Hadron matrix elements:

Current-current correlators

Different choices of currents

flavor changing current gluon distribution

�n(!, ⇠
2, P 2) = hP |T{On(⇠)}|P i

Good Lattice Cross Sections (LCSs)

! ⌘ P · ⇠



Parton Distribution Functions (PDFs) & Factorization
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LCSs:   Lattice Calculable + Renormalizable + Factorizable

P and ⇠
 Collision 
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Figure 7. Renormalization of an ultraviolet di-
vergent loop integration.

2.8. Antiquarks and gluons
We now have a definition of parton distribu-

tion functions for quarks. For antiquarks, we use
charge conjugation to define

fj̄/A(x, µ) =
1

4π

∫

dy−e−ixP+y−

⟨P+, 0⃗T |

×Tr
{

γ+ψj(0, y−, 0⃗T )O ψj(0, 0, 0⃗T )
}

×|P+, 0⃗T ⟩MS , (16)

where

O = P exp

(

−ig

∫ y−

0
dz− A+

a (0, z−, 0⃗T ) tTa

)

. (17)

For gluons we begin with the number operator
in A+ = 0 gauge. Proceeding analogously to the
quark case, we obtain an expression involving the
field strength tensor Fµν

a with color index a:

fg/A(x, µ) =
1

2π xP+

∫

dy−e−ixP+y−

⟨P+, 0⃗T |

×Fa(0, y−, 0⃗T )+νOab Fb(0, 0, 0⃗T ) +
ν

×|P+, 0⃗T ⟩MS , (18)

where

O = P exp

(

ig

∫ y−

0
dz− A+

c (0, z−, 0⃗T ) tc

)

. (19)

Here the tc generate the 8 representation of
SU(3).

3. Renormalization group

A change in the scale µ induces a change in
the parton distribution functions fa/A(x, µ). The
change comes from the change in the amount of
ultraviolet divergence that renormalization is re-
moving. Since the operators are non-local in y−,
the ultraviolet counterterms are integral opera-
tors in k+ or equivalently in momentum fraction
x. Since the ultraviolet divergences mix quarks
and gluons, so do the counterterms.

One finds

µ2 d

dµ2
fa/A(x, µ) =

∫ 1

x

dξ

ξ

∑

b

Pa/b(x/ξ,αs(µ)) fb/A(ξ, µ). (20)

The Altarelli-Parisi (= GLAP = DGLAP) kernel
Pa/b is expanded in powers of αs. The α1

s and α2
s

terms are known and used.

3.1. Renormalization group interpretation

The derivation of the renormalization group
equation (20) is rather technical. One should not
lose sight of its intuitive meaning. Parton split-
ting is always going on as illustrated in Fig. 8. A
probe with low resolving power doesn’t see this
splitting. The renormalization parameter µ cor-
responds to the physical resolving power of the
probe. At higher µ, field operators representing
an idealized experiment can resolve the mother
parton into its daughters.

Figure 8. A quark can fluctuate into a quark plus
a gluon in a small space-time volume.



Projected calculations with  

a ⇡ 0.09

MeV
fma ⇡ 0.127

243 ⇥ 64, m⇡ ⇡ 430 Finite volume effect 
Briceño, et al  

PRD 2018 

323 ⇥ 64, m⇡ ⇡ 280 MeV
fm

643 ⇥ 128, m⇡ ⇡ 170 MeV

a ⇡ 0.09 fm

Lattice spacing and  
pion mass effects

Lattice Calculation

323 ⇥ 96, m⇡ ⇡ 430 MeV
fma ⇡ 0.127 Production Recently Finished



in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)
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Figure 1: A schematic diagram of the hadron correlation function, where T labels the sink
pion, or kaon, respectively, t the inversion time slice of the currents, and ~pi and ~

p

0 represent
the momenta at source and sink. The propagators joining the two currents J1, J2 can acquire
any momentum dependeing on the available phase space.

The hadronic matrix elements for two currents J1 and J2 separated in a Euclidean direction
by ⇠ is shown in Figure 1. In the case of the pion, and in terms of the quark propagators, D,
Figure 1 can be expressed as

h⇧(�p

0)|OJ1(x0)OJ2(⇠)|⇧(�p

0)i =

=
X

y,z

e

i(p0.z�p.y)hq̄ �⇧ q(z, T ) q̄ J2 q(x0 + ⇠, t) q̄ J1 q(x0, t) q̄ �⇧ q(y, 0)i

=
X

y,z

e

i(p0.z�p.y)tr[J2 D

�1(x0 + ⇠, t; x0, t) J1 D

�1(x0, t; y, 0) �⇧

⇥D

�1(y, 0; z, T )�⇧ D

�1(z, T ; x0 + ⇠, t)],

(5)

where we note that the auxiliary propagator between J1 and J2 can be computed for any
quark mass, including in particular that of a heavy quark. The use of a heavy mass reduces
the size of the phase space which in turn gives a cleaner signal-to-noise ratio in the four-point
correlation-function calculation.

For the case of the pion and kaon, but not for the nucleon, there is a straightforward
implementation of the well-known sequential-source method that enables us to insert spatial
momentum at both the source t = 0 and the sink t = T with a minimal number of propagator
computations. The momentum at the current time slice is then constrained by momentum
conservation. This computational simplicity is a further reason to focus on the pion and kaon
in this proposal. To reduce the cost of the computation, and to simplify the analysis, we place
the currents midway between the source and sink mesons so that T = 2t, but vary the temporal
separation T so as to determine a region over which the ground state meson is dominant. Whilst
it might appear that the kaon would be the computationally more economical system since

5

Analysis shown here on isoClover with 490 Configurations 

Lattice spacing ~ 0.127 fm,

Lattice Calculation Setup

⇠  possible  
on/off axis

(323 ⇥ 96)m⇡ ⇡ 430 MeV



Example Lattice Matrix Elements

About 10 different current-current correlations are being analyzed
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Idea by D. Richards 
for reliable extraction 

of matrix elements

V-A matrix element

source-sink separation

(R. Edwards for data handling)



Momentum smearing used higher momentum

Bali, et al(PRD 2016)
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Since Gaussian smearing functions may not be optimal
for creating, e.g., p-waves, even when adding derivatives
to the interpolator, iterative smearing was later-on com-
bined with displaced quark sources (fuzzing) in Ref. [23],
a generalization of which was suggested in Ref. [24]. Fi-
nally, in Ref. [25] “free form smearing”, folding Gaussian
smearing with an arbitrary function in a gauge covariant
way, was invented. Preceding and in parallel to gauge co-
variant iterative smearing functions, gauge fixed sources
have been utilized: wall sources for zero [26] and non-
zero momentum [27], box [28] sources, Gaussian “shell
sources” [29] and sources with nodes [30]. These gauge
fixed methods and free form smearing share the disadvan-
tage that smearing the sink requires all quark positions to
be summed over individually, turning this prohibitively
expensive. Having identical source and sink interpola-
tors, however, is very desirable as only this guarantees
the positivity of the coe�cients of the spectral decompo-
sition Eq. (1) and thus the convexity of two-point func-
tions. For completeness, we also mention the “distilla-
tion” (or Laplacian-Heaviside) method of Ref. [31] since
this is closely related to gauge covariant smearing.

Large momenta increase the energy of the state and
result in faster decaying two- and three-point functions
and, therefore, in inferior noise to signal ratios. More-
over, as we shall see, excited state suppression becomes
far less e↵ective when using conventional quark smearing
methods. Some attempts have been made [32, 33] to in-
troduce an anisotropy into Wuppertal smearing [17, 18],
aiming at Lorentz contracting the interpolating wave
function according to the boost factor 1/� = m/E(p),
along the direction of the spatial momentum p. How-
ever, this did not result in the ground state enhancement
that one would have hoped for. Here we will argue and
demonstrate that to achieve satisfactory results at high
momenta, additional phase factors need to be incorpo-
rated into quark smearing functions.

This article is organized as follows. First, in Sec. II,
we discuss the basic idea behind the new class of smear-
ing functions that we introduce. Then, in Sec. III we are
more specific, modifying Wuppertal smearing as a generic
example and suggest further improvements. In Sec. IV
we discuss our simulation parameters and expectations
for the nucleon and pion energies. After the stage is set,
in Sec. V we investigate the feasibility of the method in
a realistic numerical study, optimize the smearing pa-
rameters and pursue a comparison between the new and
the conventional method. Finally, we study the pion and
nucleon dispersion relations, before we conclude.

II. MOMENTUM SMEARING: THE BASIC
IDEA

As discussed above, quark smearing within hadronic
sources or sinks is essential in lattice simulations to in-
crease the overlap with the desired physical state, reflect-
ing the fact that hadrons are extended objects, rather
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FIG. 1. Conventional smearing versus momentum smearing
for the example of a Gaussian wave function in d = 1 spa-
tial dimensions. The momentum k shifts the centre of the
distribution in momentum space, resulting in an oscillatory
behaviour in position space.

than pointlike. A smearing operator F is diagonal in
time, trivial in spin and acts on the position and colour
indices of quark fields:

(Fq)
x

=
X

y2(aZ)d
f
x�y

G
xy

q
y

, (2)

where f is a scalar function, G is a gauge covariant trans-
porter, which in the free case will be a unit matrix in
colour and position space, and d is the number of spatial
dimensions, usually d = 3. Note that the field q

x

is usu-
ally periodic in x on the lattice, whereas f

x�y

need not
be periodic in x � y. In the free case, the convolution
Eq. (2) becomes a product in Fourier space

X

x2(aZ)d
eip·x (Fq)

x

= f̃(p) q̃
p

. (3)

For the special case of a Gaussian,

f
x�y

= f0 exp

✓

� |x� y|2
2�2

◆

, (4)

the Fourier transformed smearing kernel again is a Gaus-
sian:

f̃(p) ⌘
X

z2(aZ)d
eip·zf

z

= f̃(0) exp

✓

��2

p

2

2

◆

. (5)

Thus, the smeared quark operator has maximal overlap
with a quark at rest, p = 0. Non-zero velocities are
suppressed in accordance with the above Gaussian mo-
mentum distribution. Clearly, for hadrons carrying sig-
nificant spatial momenta, such a smearing may be coun-
terproductive.
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V-V current correlation
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Collaboration between lattice QCD and perturbative QCD

With these encouraging results, we are very 
excited !!!

Extensions such as kaon, nucleon PDFs on their way….

LCSs can be a tool to test different model calculations

Ka
n at LO and NLO for different currents to be calculated
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Neutrino-Nucleon Neutral Current Elastic Scattering

Matrix element in V-A structure of  leptonic current 

The signal they were looking for was a high energy (E > 300MeV ) and a very forward going electron,

as the angle between the neutrino beam direction and the reconstructed electron direction is typically

less than 5o. They did find one event that passed the selection cuts in the antineutrino mode [55],

where the backgrounds are highly suppressed: both have CCQE backgrounds in which a muon is

produced; however, the µ+ which is produced in the antineutrino CCQE has a di↵erent curvature

than the e� in the magnetic field of the detector. The expected background was 0.003 ± 0.002

events, whereas the theoretical prediction ranged from 0.4 to 8.0 antineutrino-electron NCE events,

depending on the value of sin2✓W , which was obviously unknown at the time. The currently known

sin2✓W value would have put the prediction right about the lower limit, namely at 0.4.

While this was an extremely interesting event, one would need more than just one event as proof

of the existence of the WNC. Later Gargamelle observed candidates for the neutrino-nucleon neutral

current deep-inelastic scattering:

⌫ + N ! ⌫ + X,

where X is the hadronic final state [56]. The HPWF experiment also observed the same channel

where they were looking for the muonless neutrino interactions [57].

Now that the WNC were discovered, it turned out that neutrino-proton and antineutrino-proton

neutral current elastic scattering (NCE p),

⌫ + p ! ⌫ + p

⌫̄ + p ! ⌫̄ + p,

is very useful for probing the structure of protons and neutrons (nucleons). In particular, it is

sensitive to the presence of strange quarks inside the nucleons, as we shall discuss in Section 3.2.

The first observation of NCE p scattering was in 1976 by the Columbia-Illinois-Rockefeller [58] and

HPWF [59, 60, 61] experiments. However, the first relatively high statistics NCE p in both ⌫ and ⌫̄

modes was obtained by the BNL E734 experiment in 1980s [62]. Using the BNL E734 NCE cross-

section, the allowed region for the value of the strange quark contribution to the nucleon spin has

been extracted to yield

�s = �0.21± 0.10.

The BNL E734 experiment will be discussed in some detail in Section 3.4.

The EMC (European Muon Collaboration) experiment result [63] and the appearance of the

proton spin crisis (discussed in Section 3.4), which is still unsolved, has brought a lot of interest

22

the kinematics of the outgoing nucleon, assuming that the initial nucleon at rest, simply through

Q2 = 2mNTN ,

where TN is the kinetic energy of the outgoing nucleon. This does not depend on the scattering angle

of the nucleon, which is quite convenient, because some experiments may not be able to measure it.

Following the Feynman rules of the electro-weak theory which have been developed in Chapter 2

one can write the matrix element squared [44]:

M = �
✓

ig

4 cos ✓W

◆
2

⌫̄(q
2

)�µ(1� �
5

)⌫(q
1

)i
(gµ⌫ � qµq⌫/M2

Z)
q2 �M2

Z

hN(p
2

)|J⌫
Z |N(p

1

)i

For the scattering with a low momentum transfered (q2 ⌧ M2

Z), one can replace the propagator

�i
(gµ⌫ � qµq⌫/M2

Z)
q2 �M2

Z

! �i
gµ⌫

M2

Z

.

Furthermore, using the definition of the Fermi constant,

GF =
p

2g2

8M2

W

=
p

2g2

8M2

Z cos2 ✓W

one obtains the expression for the matrix element

M =
i

2
p

2
GF ⌫̄(q

2

)�µ(1� �
5

)⌫(q
1

)
| {z }

leptonic current

hN(p
2

)|Jµ
Z |N(p

1

)i
| {z }

hadronic current

.

The expression for the leptonic current is simple: it has the vector and axial vector parts in the

so-called V �A structure. On the other hand, the hadronic current is a complex object due to strong

interactions inside the nucleon. The most general form for the hadronic weak neutral current is

hN(p
2

)|Jµ
Z |N(p

1

)i = hN(p
2

)| FZ
1

(Q2) + FZ
2

(Q2)
i�µ⌫q⌫

2MN| {z }
Jµ

Z,V

+FZ
A (Q2)�µ�

5| {z }
�Jµ

Z,A

|N(p
1

)i,

where FZ
1

(Q2), FZ
2

(Q2) and FZ
A (Q2) are Dirac, Pauli, and axial vector nucleon weak neutral current

form factors, respectively; hN(p
2

)|Jµ
Z,V |N(p

1

)i and hN(p
2

)|Jµ
Z,A|N(p

1

)i represent the vector and

axial vector parts of the hadronic neutral current.

24

among the nuclear physics community to the measurements of NCE. However, after BNL E734 there

has been no specially designed experiments to measure the NCE channel. MiniBooNE and SciBooNE

are among the recent ones that are able to measure the NCE channel with very high statistics, but

their primary goal was not the NCE channel. MiniBooNE’s primary goal is the ⌫µ ! ⌫e oscillation

search at �m2 ⇠ 1 eV 2, while SciBooNE was designed to measure CCQE and both NC and CC

pion production cross-sections.

3.2 Neutral Current Elastic Scattering on Free Nucleons

We first describe the neutrino neutral current elastic scattering cross-section on free nucleons. This

is represented by the formula:

⌫(q
1

,�
1

) + N(p
1

,
1

)! ⌫(q
2

,�
2

) + N(p
2

,
2

),

where the labels pi, qi and q refer to the energy-momentum and �i, i to the spin of the particles.

The coresponding Feynman diagram is shown in Fig. 3.1.

Z0(q)

⌫(q
1

,�
1

) ⌫(q
2

,�
2

)

N(p
1

,
1

) N(p
2

,
2

)

Figure 3.1: Feynman diagram for the neutrino-nucleon neutral curent elastic scattering.

Neglecting the neutrino mass, the di↵erential cross-section in the laboratory frame can be ex-

pressed as:

d�

dQ2

=

D
|M |2

E

64⇡m2

NE2

⌫

,

where Q2 = �q2 is the four-momentum carried by Z0, q = p
2

� p
1

= q
1

� q
2

,
D

|M |2
E

is the matrix

element squared averaged over the initial and final spin particles (since the particle polarizations are

generally not measured), and E⌫ is the neutrino energy.

The only particle one would observe in the detector is the nucleon. One can express Q2 through

23

FIG. 5. VVVV.

isovector form factors they are usually represented in the dipole form with the same vector masses

MV and MA as for the nonstrange form factors.

hN(p2)| Jµ
Z |N(p1)i = ū(p2)[F

Z
1 (Q

2
) + FZ

2 (Q
2
)

i�µ⌫q⌫
2MN

+ FZ
A (Q

2
)�µ�5]u(p1) (13)

EDIT: The correlated systematic errors are common to both ⌫NCE and ⌫̄NCE scattering

measurements. Since both measurements are made using the same detector and have the same

ob- served final state, the detector systematic errors ? the uncertainty in the optical photon

production and prop-agation, the error associated with the detector electron- ics, and the error

associated with the PMT response ? are categorized as correlated errors.
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Global Analysis of Nucleon Strange Form Factors at Low Q2

Jianglai Liu,∗ Robert D. McKeown, and Michael J. Ramsey-Musolf†
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We perform a global analysis of all recent experimental data from elastic parity-violating electron
scattering at low Q2. The values of the electric and magnetic strange form factors of the nucleon
are determined at Q2 = 0.1 GeV/c2 to be Gs

E = −0.008 ± 0.016 and Gs
M = 0.29 ± 0.21.

PACS numbers: 11.30.Er, 13.40.Gp, 13.60.Fz, 13.60.-r, 14.20.Dh, 25.30.Bf

The existence of a “sea” of quarks and antiquarks in
the nucleon has been firmly established in deep-inelastic
lepton scattering experiments as well as in the produc-
tion of dilepton pairs (the Drell-Yan process). However,
demonstrating the role of these q̄q pairs in the static elec-
tromagnetic properties of the nucleon has been a more
elusive and difficult task.

As the lightest quark that contributes only to the qq̄
sea, the strange quark provides a unique window on the
role of the sea in the nucleon’s electromagnetic structure.
As suggested by Kaplan and Manohar [1], knowledge of
neutral current form factors, when combined with elec-
tromagnetic form factors, provides access to the contri-
bution of strange quarks to these form factors. At low
momentum transfers, the neutral current form factors
can be determined through parity-violating (PV) elec-
tron scattering experiments [2, 3].

During the last decade, there has been dramatic
progress in the study of the strange quark-antiquark con-
tributions to the nucleon elastic electromagnetic form
factors. A series of definitive PV electron scattering ex-
periments along with several theoretical studies now pro-
vide a basis for extracting precision information on these
strange quark contributions. In this work we report the
results of a global analysis of all these experiments, in-
cluding both the latest data obtained in experiments per-
formed at the Jefferson Laboratory and appropriate the-
oretical input on radiative corrections, and obtain values
for the strange electric and magnetic form factors of the
nucleon at a four-momentum transfer Q2 = 0.1 GeV/c2.
We have also studied the sub-leading Q2 dependence of
these two form factors, and find that so far the data do
not provide conclusive information.

I. STRANGE FORM FACTORS AND
PARITY-VIOLATING ELECTRON SCATTERING

The nucleon vector strange form factors, Gs
E and Gs

M ,
characterize the contribution of the strange sea quarks
to the nucleon electromagnetic form factors, and thereby

∗Electronic address: jliu@caltech.edu
†On leave from Department of Physics, University of Wisconsin-
Madison Madison, WI 53706 USA

their contribution to the charge and magnetization dis-
tributions in the nucleon. With polarized electron fa-
cilities, Gs

E and Gs
M can be accessed by measuring the

PV asymmetries in elastic e-p scattering, quasielastic e-d
scattering, and elastic e-4He scattering [4]. In very gen-
eral terms, the parity-violating asymmetry APV can be
written as

APV = Anvs + ηEGs
E + ηMGs

M , (1)

where Anvs is the “non-vector-strange” asymmetry (inde-
pendent of Gs

E and Gs
M ), and ηE and ηM are functions of

kinematic quantities, nucleon electromagnetic form fac-
tors, and nuclear models (for non-hydrogen targets).

For elastic e−p scattering, the full form of the asym-
metry is [4]

Ap
PV = −

GF Q2

4
√

2πα

1

[ϵ(Gp
E)2 + τ(Gp

M )2]

× {(ϵ(Gp
E)2 + τ(Gp

M )2)(1 − 4 sin2 θW )(1 + Rp
V )

− (ϵGp
EGn

E + τGp
MGn

M )(1 + Rn
V )

− (ϵGp
EGs

E + τGp
MGs

M )(1 + R(0)
V )

− ϵ′(1 − 4sin2θW )Gp
MGe

A} , (2)

with

τ =
Q2

4M2
p

, ϵ =

(

1 + 2(1 + τ)tan2 θ

2

)−1

,

ϵ′ =
√

τ(1 + τ)(1 − ϵ2) ,

where Mp is the mass of the proton and θ is the electron
scattering angle. In Eqn. 2, GF and α are the Fermi
and fine structure constants, respectively. Q2 is the four

momentum transfer. G(p,n)
E,M are the proton and neutron

electric and magnetic form factors, while Ge
A is proton

axial form factor seen by an electron. In order to extract
contributions from Gs

E,M to Ap
PV , one must include the

effects of Standard Model (SM) O(α) electroweak radia-
tive corrections [5]. It is often useful to characterize these
corrections in terms of ratios RV,A of the O(α) hadronic
vector (V ) and axial vector (A) weak neutral current am-
plitudes to the corresponding tree-level amplitudes. The

Rp
V , Rn

V , R(0)
V give these ratios for vector proton, neutron,

and SU(3)-singlet amplitudes, respectively. In principle,
their values can be obtained using the SM predictions
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Figure 5.1: Tree level electromagnetic and weak Feynman diagrams in the e� � N
scattering: (5.1a) photon (�) exchange, (5.1b) neutral weak Z-boson exchange.
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Figure 5.2: Feynman diagrams representing “one-quark” radiative corrections in the
e� �N scattering: (5.2a) Vacuum polarization, (5.2b) � � Z box diagram.
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Figure 5.3: Feynman diagrams representing “many-quark” radiative corrections in
the e� � N scattering. The unfilled and filled circles represent vector and axial
couplings, respectively: (5.3a) Rho (⇢) meson pole, (5.3b) pion loop.

where ↵ is the electromagnetic coupling constant, GF = 1.166 ⇥ 10�5 GeV�2 is the

Fermi constant, ei is the electromagnetic charge of the incident electron, and glV (A)

is the weak vector (axial) charge in Eqs. (5.2), (5.3) and (5.4). From Eq. (5.3), it is

seen that the neutral weak boson can have both vector and axial vector interactions.

Therefore the amplitude MZ has both parity violating (PV) and parity conserving

(PC) amplitudes:

MPV
Z =

GF

2
p
2
(giV l

µJZ
µ5 + giAl

µ5JZ
µ ), (5.3)
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where ↵ is the electromagnetic coupling constant, GF = 1.166 ⇥ 10�5 GeV�2 is the

Fermi constant, ei is the electromagnetic charge of the incident electron, and glV (A)

is the weak vector (axial) charge in Eqs. (5.2), (5.3) and (5.4). From Eq. (5.3), it is

seen that the neutral weak boson can have both vector and axial vector interactions.

Therefore the amplitude MZ has both parity violating (PV) and parity conserving

(PC) amplitudes:

MPV
Z =

GF

2
p
2
(giV l

µJZ
µ5 + giAl

µ5JZ
µ ), (5.3)
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(Anti)Neutrino-Nucleon Scattering Differential  
Cross Section 

needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]

d#
dQ2 !

G2
F

2$
Q2

E2
!
&A# BW " CW2';

where the " ( % ) sign is for ! ( !!!) scattering, and

W ! 4&E!=Mp % %'; % ! Q2=4M2
p;

A! 1
4f&GZ

A'2&1"%'% (&FZ
1 '2%%&FZ

2 '2)&1%%'"4%FZ
1F

Z
2 g;

B ! %1
4G

Z
A&FZ

1 " FZ
2 ';

C ! 1

64%
(&GZ

A'2 " &FZ
1 '2 " %&FZ

2 '2):

Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,

" * d#
dQ2 &!p' %

d#
dQ2 & !!!p' ! %G2

F

4$
Q2

E2
!
GZ

A&FZ
1 " FZ

2 'W;

produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
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0.65 0:0803# 0:0120 0:0283# 0:0037
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]
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Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,
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dQ2 &!p' %

d#
dQ2 & !!!p' ! %G2
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A&FZ
1 " FZ

2 'W;

produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
0.75 0:0657# 0:0098 0:0184# 0:0027
0.85 0:0447# 0:0092 0:0129# 0:0022
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]

d#
dQ2 !

G2
F

2$
Q2

E2
!
&A# BW " CW2';
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Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,

" * d#
dQ2 &!p' %

d#
dQ2 & !!!p' ! %G2

F

4$
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E2
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GZ

A&FZ
1 " FZ

2 'W;

produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
0.75 0:0657# 0:0098 0:0184# 0:0027
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]
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Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,
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dQ2 & !!!p' ! %G2
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produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]
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Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,
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produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
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Calculation of  F1Z and F2Z

I. MODEL-1
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Assume an exponential t-dependence with an x-dependent slope and with zero skewness ⇠ = 0

set

Hs(x, t)�H s̄(x, t) = (s(x)� s̄(x))etfs(x) (2)

with
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f
s

(x) can be related to the average squared of impact parameter (Eq. (22) in Ref. [2]). We take

di↵erent sets of NNPDF and MMHT collaboration data (based on di↵erent parameter values in

the PDFs fit) for (s(x)� s̄(x)) and consider only those sets which produce F s

1 (t) that have some
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linear trajectory, ↵
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1 (t) from MMHT collaboration

is preferred to give a better match to the lattice F s

1 (t). (I do not understand the physical
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in [24]. We obtain systematics from the global fit formula
by replacing the volume correction by e−mπL only and also
by adding mπ;vs term in the fit and include the difference in
the systematics of the global fit results. The results of
Gs

MðQ2Þ in the continuum limit are presented in Fig. 4.

IV. CALCULATION OF NEUTRAL WEAK
FORM FACTORS

Since the neutral weak Z-boson can have both vector and
axial vector interactions, the amplitude of the Z-exchange
can have both parity-conserving and parity-violating com-
ponents. The parity-conserving and parity-violating
Z-amplitudes in the electron-nucleon scattering can be
written as

MPC
Z ¼ GF

2
ffiffiffi
2

p ðgiVlμJZμ þ giAl
μ5JZμ5Þ; ð14Þ

MPV
Z ¼ GF

2
ffiffiffi
2

p ðgiVlμJZμ5 þ giAl
μ5JZμ Þ; ð15Þ

where GF is the Fermi constant, giVðAÞ the weak vector

(axial) charge of the fermions, lμðlμ5Þ the leptonic vector
(axial) current, and JZμ ðJZμ5Þ the nucleon vector(axial)
current. In the electron-nucleon elastic scattering, the
first-order interactions are mediated either by a photon
(γ) or a neutral weak Z-boson as shown in Figs. 5(a)
and 5(b). The contributions to the weak FFs from additional
diagrams in Figs. 5(c) and 5(d) should also be considered.
Moreover, there can be contributions that involve strong
interactions where γ and Z-boson can interact with several
quarks and these diagrams are not shown here. These
“many-quark” corrections are target specific and difficult to
calculate; the calculations are model-dependent. We use the
LFHQCD predictions of nucleon electromagnetic form
factors GpðnÞ

E;M ðQ2Þ from Eq. (9) and Gs
E;MðQ2Þ from lattice

QCD calculation in Eq. (1) to obtain the nucleon neutral
weak FFs which are shown in Figs. 6 and 7.
We address several sources of systematic uncertainties

coming from the LFHQCD model, such as from the
variations in κ-value, from the higher Fock components
probability parameters γpðnÞ and from r to estimate neutral
weak FFs for the proton and neutron. When calculating the

(a) (b) (c) (d)

FIG. 5. Feynman diagrams representing tree-level EM and weak interactions and “one-quark” radiative corrections.

FIG. 6. Q2-dependence of the proton and neutron neutral weak
magnetic form factor GZ;pðnÞ

M . The smaller uncertainties are from
statistics alone of the lattice QCD calculation of Gs

E;MðQ2Þ. The
various systematic uncertainties from the LFHQCD model and
lattice QCD calculation and the statistical uncertainties have been
added in quadrature to obtain the final errors in the neutral weak
FFs calculation. The red star is the experimental result from [1]
and the orange triangle is from the analysis of SAMPLE proton
data performed in [21] at Q2 ¼ 0.1 GeV2 (with offset Q2 for
visibility).

FIG. 7. Q2-dependence of the proton and neutron neutral weak
electric form factor GZ;pðnÞ

E . The smaller uncertainties are from
statistics of the lattice QCD calculation of Gs

E;MðQ2Þ. The various
systematic uncertainties from the LFHQCD model and lattice
QCD calculation and the statistical uncertainties have been added
in quadrature to obtain the final errors in the neutral weak FFs
calculation.
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We determine the nucleon neutral weak electromagnetic form factors GZ,p(n)

E,M by combining results
from light-front holographic QCD and lattice QCD calculations. We deduce nucleon electromagnetic
form factors from light-front holographic QCD which provides a good parametrization of the ex-
perimental data of the nucleon electromagnetic form factors in the entire momentum transfer range
and isolate the strange quark electromagnetic form factors Gs

E,M using lattice QCD. From these
calculations, we obtain precise estimates of the neutral weak form factors in the momentum transfer
range of 0GeV2  Q2  0.5GeV2. From the lattice QCD calculation, we present Q2-dependence
of the strange quark form factors. We also deduce the neutral weak Dirac and Pauli form factors
F

Z,p(n)

1,2 of the proton and the neutron.

I. INTRODUCTION

In the electron elastic scattering from a hadron,
parity-violating asymmetry arises from the interfer-
ence of weak and electromagnetic amplitudes where
the neutral weak current scattering is mediated by
the Z-boson exchange. Because the weak current con-
tains both vector and axial vector contributions, it vio-
lates parity and this property of the neutral weak cur-
rent has been the main interest of the parity-violating
(PV) experiments [1–13]. These PV experiments are
important as they allow measurements of the stan-
dard model parameters related to Z-boson couplings
and search for new PV interactions beyond the stan-
dard model. When electroweak (EW) radiative cor-
rections [14, 15] are taken into account, the neutral
weak electric and magnetic form factors G

Z,p

E,M

of the
nucleon, under the assumption of isospin symmetry,

can be expressed in terms of nucleon electric (G�,p(n)

E

)

and magnetic (G�,p(n)

M

) form factors and a contribution
from the strange (s) quarks as [3, 16–18],

G

Z,p(n)

E,M

(Q2) =
1

4


(1�4 sin2 ✓

W

)(1+R

p(n)

V

)G�,p(n)

E,M

(Q2)

�(1+R

n(p)

V

)G�,n(p)

E,M

(Q2)�G

s

E,M

(Q2)

�

where the subscript E(M) stands for the elec-
tric(magnetic) form factor (FF) and the superscript
p(n) stands for the proton(neutron). Under the isospin
symmetry, the strange electromagnetic form factor
(EMFF) is the same for the proton and neutron, i.e.

G

s,p

E,M

= G

s,n

E,M

= G

s

E,M

. R

p(n)

V

and R

(0)

V

are radiative
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corrections to the vector form factors calculated
in Ref. [14] and translated into the MS-scheme in
Ref. [15]. The updated analysis of these radiative
corrections can be found in Ref. [19] and we use the
values listed in Ref. [20] for the subsequent calcula-
tions.

The first measurement of the proton neutral
weak magnetic form factor G

Z,p

M

from PV asym-
metry in the polarized ~e � p scattering experi-
ment was performed by the SAMPLE collabo-
ration. Performed at a momentum transfer of
Q

2 = 0.1GeV2, the neutral weak magnetic form
factor was found to be G

Z,p

M

(Q2 = 0.1GeV2) =
0.34(11) nucleon magneton (n.m.) which corresponds
to a value of Gs

M

(Q2 = 0.1GeV2) = 0.23(44) n.m [1].
In an updated analysis Ref. [21] of the SAMPLE
data, one of the authors from Ref. [1] obtained
PV asymmetry A = (�5.22 ± 2.24 ± 0.62) ⇥ 10�6

compared to the A = (�6.34 ± 1.45 ± 0.53) ⇥ 10�6

at Q

2 = 0.1GeV2 reported in Ref. [1]. Both of
these PV asymmetries agree within uncertainties.
While extracting G

Z,p

M

using Eq. (1), the author in
Ref. [21] used radiative corrections from Ref. [15]
instead of the radiative corrections [22] that were
used in Ref. [1]. The author in Ref. [21] obtained
G

Z,p

M

(Q2 = 0.1GeV2) = 0.29(16) n.m. which corre-
sponds to G

s

M

(Q2 = 0.1GeV2) = 0.49(65) n.m.. More
technical details of this updated analysis, such as the
inclusion of shutter closed asymmetries in the experi-
ment, scintillation measurements, etc. are beyond the
scope of this work and interested readers are referred
to Ref. [21] for more discussion. Another reanalysis [2]
of the SAMPLE data with three major modifications
implemented, such as a developed Monte-Carlo simula-
tion of the full experimental geometry, consideration of
background associated with the threshold photo-pion
production which was not included in Ref. [1], and a
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corresponding FFs in the weak interaction, can be writ-
ten as [39, 40]:

d�⌫(⌫)N!⌫(⌫)N

dQ2

=
G2

F

2⇡

Q2

E2

⌫

(A±BW + CW 2), (1)

where

A=
1

4
[(GZ

A)
2(1+⌧)�{(FZ

1

)2�⌧(FZ
2

)2}(1�⌧)+4⌧FZ
1

FZ
2

],

B = �1

4
GZ

A(F
Z
1

+ FZ
2

),

C =
1

64⌧
[(GZ

A)
2 + (FZ

1

)2 + ⌧(FZ
2

)2],

W = 4(E⌫/Mp � ⌧). (2)

In Eq. (1), the +(�) sign is for ⌫(⌫) scattering o↵ a
free nucleon, GF is the Fermi constant [41], E⌫ is the
average energy of neutrino beam, Mp is nucleon mass,
and ⌧ = Q2/4M2

p . The Q2-dependence in the FFs in
Eqs. (1) and (2) is implied and not written explicitly.
The WNC Dirac and Pauli FFs FZ

1,2 in Eq. (2) can
be calculated in terms of proton (p) and neutron (n)
EMFFs F p,n

1,2 and s-quark FF F s
1,2 as

FZ
1,2 =

�1
2
� sin2 ✓

W

�
(F p

1,2 � Fn
1,2)

� sin2 ✓
W

(F p
1,2 + Fn

1,2)�
F s
1,2

2
. (3)

To calculate FZ
1,2(Q

2) from Eq. (3), we need to com-
bine F s

1,2 and F p,n
1,2 form factors. To do so, we use

the most precise values of F s
1,2 obtained from the lat-

tice QCD calculations [42–44] at the physical pion
mass and in the continuum and infinite volume lim-
its. For the nucleon EMFFs F p,n

1,2 , we use the most re-
cent model-independent z-expansion fit [45, 46] includ-
ing two-photon-exchange correction to world electron
scattering experimental data from Ref. [47]. We then
insert the values of FZ

1,2(Q
2) on the right-hand side and

flux-integrated d�/dQ2 from the MiniBooNE (⌫)⌫�N
scattering experiments [29, 30] on the left-hand side of
Eq. (1) to determine GZ

A. Since cross sections are not
directly calculable in lattice QCD, for the d�/dQ2 of
(⌫)⌫�N NCE scattering, we have to use experimental
data in a limited Q2-region as discussed below. It is
worth mentioning that, a somewhat similar approach
was taken in Ref. [48] to obtain s-quark Sachs EMFFs
Gs

E,M and �s.
Since we use d�/dQ2 from MiniBooNE (⌫)⌫ � N

scattering experiments in our analysis, we need to
keep several limitations in mind. For example, im-
plementation of all possible nuclear e↵ects from dif-
ferent nuclear models in (⌫)⌫-scattering MC simula-
tions is a daunting task if not impossible at this mo-
ment [49–51]. The MC simulator, NUANCE [52] used

by MiniBooNE Collaboration, implemented NCE scat-
tering o↵ free nucleons based on Ref. [53], relativistic
fermi gas model for bound states [54], pion production
mechanism [55], Pauli-blocking mechanism to describe
data in the low Q2-regime, assigned a 20% probabil-
ity and associated uncertainties with outgoing pion in
the final-state interaction (FSI), various mechanisms
for the background subtraction and the reconstructed
Q2 is proportional to the energy of all the final-state
nucleons produced in the interaction. Instead of a free
proton target, MiniBooNE used a mineral-oil (CH

2

)
based Cherenkov detector, and therefore, (⌫)⌫ scatters
o↵ both the bound proton and neutrons in carbon (C)
and free protons in hydrogen (H). To obtain (⌫)⌫�N -
scattering o↵ free nucleons, di↵erent e�ciency correc-
tions C associated with NCE scattering on free protons
(p) in H and on bound protons(neutrons) in C are con-
sidered as:

d�⌫(⌫)N!⌫(⌫)N

dQ2

=
1

7
C⌫(⌫)p,H(Q2)

d�⌫(⌫)p!⌫(⌫)p,H

dQ2

+
3

7
C⌫(⌫)p,C(Q

2)
d�⌫(⌫)p!⌫(⌫)p,C

dQ2

+
3

7
C⌫(⌫)n,C(Q

2)
d�⌫(⌫)n!⌫(⌫)n,C

dQ2

(4)

In our analysis, to avoid possible unknown systemat-
ics in C-values, we restrict ourselves using the d�/dQ2

data only in the Q2-regions where all three C’s in
Eq. (4) are equal to 1 within about 2%, meaning the nu-
clear e↵ects are the smallest in this region and possible
e↵ects of the dipole axial mass Mdip

A used as input in
the MC simulation are minimized by scattering o↵ a p
and n when C ⇡ 1. Therefore, for the determination of
GZ

A(Q
2), we consider d�/dQ2 data extracted by Mini-

BooNE [29, 30] only in the regions 0.40 < Q2 < 0.68
GeV2 (for ⌫ � N scattering) and 0.27 < Q2 < 0.67
GeV2 (for ⌫ �N scattering).

The systematic errors are correlated and common to
both ⌫-NCE and ⌫-NCE scattering measurements by
MiniBooNE and the fit to obtainGZ

A(0) in the following
analysis must be a correlated fit so that the fit uncer-
tainty is not underestimated. Now, with GZ

A(Q
2) ob-

tained from the combination of experimental and lat-
tice QCD data in the 0.3 . Q2 . 0.7 GeV2 region as
described above, we perform a z-expansion fit [45, 46]:

GZ,z�exp

A (Q2)=
k
maxX

k=0

akz
k, z =

p
t
cut

+Q2�
p
t
cutp

t
cut

+Q2

+

p
t
cut

(5)

to the GZ
A(Q

2) data to obtain WNC axial charge
GZ

A(0). We use isoscalar threshold t
cut

= (3m⇡)2 in
fit Eq. (5) and list the results of the fit parameters in
Table I. It is seen form Table I that the uncertainties

3

FIG. 1. Neutral current weak axial form factor GZ
A(Q

2)
obtained from analysis combining MiniBooNE data of
(⌫)⌫ �N scattering di↵erential cross sections, lattice QCD
estimates of s-quark EMFFs and model-independent z-
expansion to nucleon EMFF data. The cyan and blue bands
show 2 and 4-terms z-expansion fit to the GZ

A(Q
2) data, re-

spectively. The magenta band shows a dipole fit to the
data.

z-exp fit Fit parameters GZ
A(0)

2-terms a1 = 1.378(92) -0.754(26)
3-terms a1 = 1.260(359), a2 = 0.200(623) -0.738(54)
4-terms a1 = 1.248(367), a2 = 0.127(973), -0.734(63)

a3 = 0.201(1.939)

Dipole fit Mdip
A = 0.936(53) GeV �0.752(56)

TABLE I. z-expansion fit parameters with 2, 3, and 4 terms
in fit Eq. (5) for the GZ

A(Q
2) data. The last row shows the

result of a dipole fit.

in the z-expansion fit parameters increase and have
no signal as we increase the number of fit parameters,
while a

0

= GZ
A(0) remains the same within uncertainty.

This means that the higher order terms (k � 2) in the
z-expansion do not have significant impact on the fit.
We consider the z-expansion fit with 4-terms for the
subsequent analysis and add the di↵erences in the cen-
tral values between the 2, 3, and 4-term fits in quadra-
ture as the systematic uncertainty of the fit to obtain
a final value

GZ
A = �0.734(63)(20) (6)

As shown in FIG. 1, the present calculation does not
provide any conclusive evidence of any statistically sig-
nificant di↵erence between the z-expansion and dipole
fits. Possible consequences of Mdip

A = 0.936(53) GeV
value will be discussed later.

An important result demonstrated in FIG. 2 is that,
although Gs

E,M contribution to the nucleon is much
smaller compared to the valence quark contribution as
shown in Refs. [42–44], an assumption of Gs

E,M (Q2) =
0 will lead to inconsistent results of the nucleon ma-
trix element GZ

A(Q
2) obtained from the anti-neutrino

FIG. 2. Neutral current weak axial form factor GZ
A(Q

2) by
assuming zero s-quark contribution Gs

E,M leads to incon-
sistent matrix elements obtained from ⌫ � N and ⌫ � N
scattering.

and the neutrino scattering cross sections data. A
nonzero Gs

E,M (Q2) increases GZ
A(Q

2) extracted from
neutrino scattering and decreases that extracted from
anti-neutrino scattering data in their magnitudes and
therefore cannot be ignored as mostly done in such cal-
culations.

One can relate GZ
A with the CC axial FF GCC

A

through the s-quark axial FF [39, 40] as

GZ
A =

1

2
(�GCC

A +Gs
A) (7)

With GCC
A (0) = gA = 1.2723(23) [41] and GZ

A(0) from
Eq. (6), we obtain

Gs
A(0) ⌘ �s = �0.196(127)(41) (8)

Although, evaluation of a smaller number from the
cancellation of two comparatively larger numbers al-
ways results in a big uncertainty as can be seen from
�s obtained in Eq. (8); one important feature of this
method is that the (⌫)⌫�N NCE cross section depends
directly on the s-quark contribution and therefore, no
assumptions about SU(3) flavor symmetry (see global
analysis [58] of polarized inclusive and semi-inclusive
deep-inelasticscattering and single-inclusive e+e� an-
nihilation data) or fragmentation functions (for discus-
sion see Ref. [56, 57]) are needed here to obtain �s.
Within the uncertainty, �s obtained in Eq. (8) is con-
sistent with �s ⇠ �0.1 obtained in global fits [59–64],
�s = 0.08(26) from MiniBooNE ⌫ � N NCE scatter-
ing [29], and �s = 0,�0.15(7),�0.13(09),�0.21(10)
depending on various values of s-quark EMFF from
BNL E734 analysis [40].

Once we obtain GZ
A(Q

2) in the 0 . Q2  1 GeV2

kinematic region, the right-hand-side of Eq. (2) can
now be used to obtain (⌫)⌫ �N di↵erential cross sec-
tions as shown in FIG. 3. This way, we are able to
successfully reconstruct the MiniBooNE data outside
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We determine the nucleon neutral weak electromagnetic form factors GZ,p(n)

E,M by combining results
from light-front holographic QCD and lattice QCD calculations. We deduce nucleon electromagnetic
form factors from light-front holographic QCD which provides a good parametrization of the ex-
perimental data of the nucleon electromagnetic form factors in the entire momentum transfer range
and isolate the strange quark electromagnetic form factors Gs

E,M using lattice QCD. From these
calculations, we obtain precise estimates of the neutral weak form factors in the momentum transfer
range of 0GeV2  Q2  0.5GeV2. From the lattice QCD calculation, we present Q2-dependence
of the strange quark form factors. We also deduce the neutral weak Dirac and Pauli form factors
F

Z,p(n)

1,2 of the proton and the neutron.

I. INTRODUCTION

In the electron elastic scattering from a hadron,
parity-violating asymmetry arises from the interference
of weak and electromagnetic amplitudes where the neu-
tral weak current scattering is mediated by the Z-boson
exchange. Because the weak current contains both vec-
tor and axial vector contributions, it violates parity
and this property of the neutral weak current has been
the main interest of the parity-violating (PV) experi-
ments [? ? ? ? ? ? ? ? ? ? ? ? ? ]. These PV
experiments are important as they allow measurements
of the standard model parameters related to Z-boson
couplings and search for new PV interactions beyond
the standard model. When electroweak (EW) radiative
corrections [? ? ] are taken into account, the neutral
weak electric and magnetic form factors G

Z,p

E,M

of the
nucleon, under the assumption of isospin symmetry,

can be expressed in terms of nucleon electric (G�,p(n)

E

)

and magnetic (G�,p(n)

M

) form factors and a contribution
from the strange (s) quarks as [? ? ? ? ],

G

Z,p(n)

E,M

(Q2) =
1

4


(1�4 sin2 ✓

W

)(1+R

p(n)

V

)G�,p(n)

E,M

(Q2)

�(1+R

n(p)

V

)G�,n(p)

E,M

(Q2)�(1+R

(0)

V

)Gs

E,M

(Q2)

�
, (1)

where the subscript E(M) stands for the elec-
tric(magnetic) form factor (FF) and the superscript
p(n) stands for the proton(neutron). Under the isospin
symmetry, the strange electromagnetic form factor
(EMFF) is the same for the proton and neutron, i.e.

G

s,p

E,M

= G

s,n

E,M

= G

s

E,M

. R

p(n)

V

and R

(0)

V

are radiative
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corrections to the vector form factors calculated in
Ref. [? ] and translated into the MS-scheme in Ref. [?
]. The updated analysis of these radiative corrections
can be found in Ref. [? ] and we use the values listed
in Ref. [? ] for the subsequent calculations.

The first measurement of the proton neutral
weak magnetic form factor G

Z,p

M

from PV asym-
metry in the polarized ~e � p scattering experi-
ment was performed by the SAMPLE collabo-
ration. Performed at a momentum transfer of
Q

2 = 0.1GeV2, the neutral weak magnetic form
factor was found to be G

Z,p

M

(Q2 = 0.1GeV2) =
0.34(11) nucleon magneton (n.m.) which corresponds
to a value of Gs

M

(Q2 = 0.1GeV2) = 0.23(44) n.m [?
]. In an updated analysis Ref. [? ] of the SAMPLE
data, one of the authors from Ref. [? ] obtained
PV asymmetry A = (�5.22 ± 2.24 ± 0.62) ⇥ 10�6

compared to the A = (�6.34 ± 1.45 ± 0.53) ⇥ 10�6

at Q

2 = 0.1GeV2 reported in Ref. [? ]. Both of
these PV asymmetries agree within uncertainties.
While extracting G

Z,p

M

using Eq. (??), the author in
Ref. [? ] used radiative corrections from Ref. [? ]
instead of the radiative corrections [? ] that were
used in Ref. [? ]. The author in Ref. [? ] obtained
G

Z,p

M

(Q2 = 0.1GeV2) = 0.29(16) n.m. which corre-
sponds to G

s

M

(Q2 = 0.1GeV2) = 0.49(65) n.m.. More
technical details of this updated analysis, such as the
inclusion of shutter closed asymmetries in the experi-
ment, scintillation measurements, etc. are beyond the
scope of this work and interested readers are referred
to Ref. [? ] for more discussion. Another reanalysis [?
] of the SAMPLE data with three major modifica-
tions implemented, such as a developed Monte-Carlo
simulation of the full experimental geometry, consid-
eration of background associated with the threshold
photo-pion production which was not included in
Ref. [? ], and a di↵erent way of analyzing background
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(Q2 = 0.1GeV2) = 0.29(16) n.m. which corre-
sponds to G

s

M

(Q2 = 0.1GeV2) = 0.49(65) n.m.. More
technical details of this updated analysis, such as the
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scope of this work and interested readers are referred
to Ref. [? ] for more discussion. Another reanalysis [?
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]

d#
dQ2 !

G2
F

2$
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E2
!
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where the " ( % ) sign is for ! ( !!!) scattering, and
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1 '2 " %&FZ

2 '2):

Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,

" * d#
dQ2 &!p' %

d#
dQ2 & !!!p' ! %G2

F

4$
Q2

E2
!
GZ

A&FZ
1 " FZ

2 'W;

produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
0.75 0:0657# 0:0098 0:0184# 0:0027
0.85 0:0447# 0:0092 0:0129# 0:0022
0.95 0:0294# 0:0074 0:0108# 0:0022
1.05 0:0205# 0:0062 0:0101# 0:0027

0.50 0:137# 0:023 0:0591# 0:0102
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:
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E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]
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Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,
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produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]
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Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
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are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,
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produces a relation between the Sachs magnetic form
factors (in FZ
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2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
0.75 0:0657# 0:0098 0:0184# 0:0027
0.85 0:0447# 0:0092 0:0129# 0:0022
0.95 0:0294# 0:0074 0:0108# 0:0022
1.05 0:0205# 0:0062 0:0101# 0:0027

0.50 0:137# 0:023 0:0591# 0:0102

P H Y S I C A L R E V I E W L E T T E R S week ending
27 FEBRUARY 2004VOLUME 92, NUMBER 8

082002-2 082002-2

needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:
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M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs
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because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
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TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.
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GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
0.75 0:0657# 0:0098 0:0184# 0:0027
0.85 0:0447# 0:0092 0:0129# 0:0022
0.95 0:0294# 0:0074 0:0108# 0:0022
1.05 0:0205# 0:0062 0:0101# 0:0027

0.50 0:137# 0:023 0:0591# 0:0102
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needed for a final determination of the strange magnetic
form factor from these data.

The G0 experiment [5] at Jefferson Laboratory will
circumvent this difficulty with the axial term by combin-
ing three measurements: forward scattering of protons
from ~eep collisions, backward scattering of electrons from
~eep collisions, and backward scattering of electrons from
~eed collisions. In this way, they will extract Gs

M, Gs
E, and

Ge
A separately, so that their results for Gs

M and Gs
E will

not be contaminated by uncertain contributions to Ge
A.

These data will cover a range of Q2 from 0.1 to 1:0 GeV2

and thereby test the calculations of Zhu et al. [14] over
this range.

Another technique for avoiding the axial term is to
observe the parity-violating asymmetry in scattering
from a spinless, isoscalar target, such as 4He, as proposed
by Musolf and Donnelly [13]. In this case, only the
electric form factors contribute to the asymmetry. Two
measurements at Jefferson Laboratory will make use of
this idea, at Q2 ! 0:1 and 0:6 GeV2, to measure Gs

E. The
low Q2 experiment [6] will measure the slope of Gs

E,
while the experiment at moderate Q2 [7] will measure
the actual value of Gs

E.
Elastic scattering of neutrinos from protons does not

suffer the difficulties described above, as there is no Gewm
A

form factor in neutrino scattering. This Letter explores
what can be learned about the strange axial form factor
by combining existing !p ! !p and !!!p ! !!!p data with
the existing and upcoming data on parity-violating ~eep
scattering.

The HAPPEX Collaboration has measured the
forward-angle parity-violating asymmetry in ~eep elastic
scattering at Q2 ! 0:477 GeV2. They report a combina-
tion of Gs

E and Gs
M [17]:

Gs
E " 0:392Gs

M ! 0:025# 0:020# 0:014:

Their result contains a contribution as well from Ge
A, but

their sensitivity to Ge
A is $4% of that to Gs

E and Gs
M

because their measurement is at a very forward angle.
They used a value of Ge

A from Ref. [14]. The calculation of
Ref. [14] is not yet confirmed at this value of Q2, but even
a large error in it would produce only a small additional
uncertainty in the interpretation of the HAPPEX result.

The only major measurement to date of !p and !!!p
elastic scattering cross sections took place at Brookhaven
National Laboratory (BNL), Experiment E734 [18], using
wideband neutrino and antineutrino beams of average
kinetic energy 1.25 GeV incident upon a large liquid
scintillator target-detector system. Table I summarizes
the results of this experiment. Several attempts have
been made to extract the strange axial form factor from
these data [18–20]. In all cases, there was an assumption
made that Gs

A had a dipole Q2 dependence — that assump-
tion will not be made here.

Many years ago Llewellyn Smith [21] noted the use-
fulness of measuring the difference in the differential
cross sections of the charged-current reactions !!!n !
"%p and !p ! ""n, as this yields a simple relation
between GCC

A and the magnetic form factors of the proton
and neutron. In the present discussion GCC

A is regarded as
known and the difference in the cross sections of the
neutral current processes !p ! !p and !!!p ! !!!p is
used to relate Gs

M and Gs
A. The cross section for !p and

!!!p elastic scattering is given by [19]

d#
dQ2 !

G2
F

2$
Q2

E2
!
&A# BW " CW2';

where the " ( % ) sign is for ! ( !!!) scattering, and

W ! 4&E!=Mp % %'; % ! Q2=4M2
p;

A! 1
4f&GZ

A'2&1"%'% (&FZ
1 '2%%&FZ

2 '2)&1%%'"4%FZ
1F

Z
2 g;

B ! %1
4G

Z
A&FZ

1 " FZ
2 ';

C ! 1

64%
(&GZ

A'2 " &FZ
1 '2 " %&FZ

2 '2):

Here E! is the neutrino beam energy, and FZ
1 , FZ

2 , and GZ
A

are, respectively, the neutral weak Dirac, Pauli, and axial
form factors. Taking the difference of these two cross
sections,

" * d#
dQ2 &!p' %

d#
dQ2 & !!!p' ! %G2

F

4$
Q2

E2
!
GZ

A&FZ
1 " FZ

2 'W;

produces a relation between the Sachs magnetic form
factors (in FZ

1 " FZ
2 ) and the axial form factors (in GZ

A).
By making use of charge symmetry, one may show that

TABLE I. Differential cross section data from BNL E734
[18]. The uncertainties shown are total; they include statisti-
cal, Q2-dependent systematic, and Q2-independent systematic
contributions, all added in quadrature. The extra row at the
bottom (0:50 GeV2) lists the cross sections averaged between
the 0.45 and 0:55 GeV2 points.

Q2 d#=dQ2&!p' d#=dQ2& !!!p'
GeV2 10%12 &fm=GeV'2 10%12 &fm=GeV'2

0.45 0:165# 0:033 0:0756# 0:0164
0.55 0:109# 0:017 0:0426# 0:0062
0.65 0:0803# 0:0120 0:0283# 0:0037
0.75 0:0657# 0:0098 0:0184# 0:0027
0.85 0:0447# 0:0092 0:0129# 0:0022
0.95 0:0294# 0:0074 0:0108# 0:0022
1.05 0:0205# 0:0062 0:0101# 0:0027

0.50 0:137# 0:023 0:0591# 0:0102
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FIG. 3. Comparison of the determination of (⌫)⌫ �N dif-
ferential cross sections between this calculation and Mini-
BooNE extractions. The lowest four-Q2 data points for
⌫ �N scattering is compiled from Ref. [65].

0.3 . Q2 . 0.7 GeV2 region that was used for the de-
termination of GZ

A(Q
2). From Eq. (2), it can be seen

that the di↵erential cross sections for (⌫)⌫ � N scat-
tering should increase as Q2 approaches to zero. It
is evident from FIG. 3 that in the Q2 . 0.15 GeV2,
the free-nucleon scattering prediction starts to deviate
from the MiniBooNE calculation. One reason is due
to the fact that, Pauli blocking e↵ect for which low
momentum transfer interactions are suppressed due to
occupied phase space, was already included in the NU-
ANCE MC simulation, showed to have impact exactly
in the Q2 . 0.15 GeV2 region [66, 67]. Among other
nuclear e↵ects one possible reason is nuclear shadowing
which is related to the phenomenon that at low Q2, the
resolution is not su�cient to resolve a single nucleon
wave function and therefore d�/dQ2 decreases [68].

The importance of a correct determination GZ
A(Q

2)
is shown in FIG. 4, and it is seen that the term
G2

F
2⇡

Q2

E2

⌫

1

64⌧ (G
Z
A)

2W 2 contributes the largest to d�/dQ2

among individual terms in Eq. (1) (essentially GZ
A gives

dominant contribution in all the terms). Another im-
portant observation is that, in the MiniBooNE NU-
ANCE MC simulation, Mdip

A = 1.23(8) for nucleons

bound in C, Mdip

A = 1.13(10) GeV for free nucleons,

Mdip

A =1.10(27) GeV for ⌫-induced resonance pion pro-

duction, and Mdip

A =1.30(52) GeV for multi-pion pro-
duction were used [29, 30]. However, the dipole fit with
Mdip

A =0.936(53) GeV to GZ
A data in our analysis and

the successful reconstruction of the MiniBooNE data
in FIG. 3 suggests that the flux-integrated d�/dQ2 for
(⌫)⌫�N scattering is indeed not sensitive to the input
ofMdip in the region where e�ciency corrections C ⇡ 1
in Eq. (4). It is worth mentioning that, the higher val-
ues of Mdip

A in the MC simulation of the experimental
data were obtained either describe a strong suppression
of muons in the forward direction [69] or to produce
good agreement with the data [28]. NOMAD [24] and

FIG. 4. Contributions from A(Q2), B(Q2), C(Q2) defined
in Eq. (2) and GZ

A(Q
2) to ⌫p and ⌫p di↵erential cross sec-

tions for neutrino beam energy E⌫ = 1 GeV. The symbol

↵ =
G2

F
2⇡

Q2

E2

⌫
is used in the figure for shorthand notation.

MINERvA [33, 34] with 2p � 2h correction obtained
Mdip

A ⇠1 GeV in agreement with the world average [70].
Di↵erent model calculations with several of many pos-
sible nuclear e↵ects can also describe the MiniBooNE
CCQE scattering data still with Mdip

A ⇠1 GeV [71–74]
(for detailed discussion see Ref. [51]). However, our
analysis presented here should not be interpreted to
say anything definitive if/how Mdip

A can be modified
due to nuclear e↵ects.

Now, our determinations of GZ
A(Q

2) and (⌫)⌫ � N
di↵erential cross sections should go through a san-
ity check and test of predictive power and only then
these determinations can be used to disentangle nu-
clear e↵ects in the neutrino-nucleus scattering ex-
periments. For this purpose, we now predict the
d�⌫(⌫)N!⌫(⌫)N/dQ2 and compare them with those ob-
tained from BNL E734 experiment for a given E⌫ =
[1.2, 1.3] GeV. It is important to mention that none of
the BNL E734 data was used in our analysis to ob-
tain GZ

A and the experimental data analysis and sys-
tematics related to BNL experiment can be di↵erent
than those of MiniBooNE experiments. As can be
seen from FIG. 5, we can successfully predict the BNL
E734 (⌫)⌫ � N di↵erential cross sections in the entire
Q2-region, demonstrating the validity and predictive
power of our determination of GZ

A(Q
2) and (⌫)⌫ � N

di↵erential cross sections using the MiniBooNE data
and lattice QCD determinations of F s

1,2.

Finally, this calculation can be used to determine
(⌫)⌫�N di↵erential cross sections in a reliable way and
and therefore paves a way to disentangle nuclear e↵ects
from the neutrino-nucleus scattering experiments. The
value of GZ

A(Q
2) obtained here can be used to isolate

the higher order radiative corrections associated with
the e↵ective weak axial form factors in the electron-
proton parity violating scattering experiments. Al-
though �s-value obtained in this analysis has large

Dominant contribution  
from  GZ

A



Reconstruction of  Differential Cross Sections

Nuclear effects 
Pauli blocking included 

 in simulation 
 Observed to have effect 

for  Q2 < 0.15 GeV2



BNL E734 data 
was NOT used in the analysis



the sum of the weak neutral Dirac and Pauli form fac-
tors is

FZ
1 ! FZ

2 " 1
2#$1% 4sin2!W&Gp

M %Gn
M %Gs

M':

Also recalling that

GZ
A " 1

2$%GCC
A !Gs

A&;

then the expression involving ! may be written as

#GCC
A 'Gs

M %Gs
AG

s
M !#$1% 4sin2!W&Gp

M %Gn
M'Gs

A!
!

16"
W

E2
#

Q2

!

G2
F
%GCC

A #$1% 4sin2!W&Gp
M %Gn

M'
"

" 0:

This relationship has the form

aGs
M %Gs

AG
s
M ! bGs

A ! c " 0;

where one may easily identify the factors a, b, and c from
the previous equation. Using the dipole form for the
magnetic form factors, Gp;n

M " $p;n=$1!Q2=M2
V&2

(where MV " 0:843 GeV is the vector mass and $p "
2:793 and $n " %1:913 are the proton and neutron mag-
netic moments) and using the cross sections from E734,
one may calculate a relation between Gs

M and Gs
A, shown

in Fig. 1 for Q2 " 0:5 GeV2. There is an asymptote in Gs
M

when Gs
A " a and, similarly, an asymptote in Gs

A when
Gs

M " b. Since the absolute values of Gs
M and Gs

A are
unlikely to be very large, this relation rules out a range
of moderate positive values of both Gs

M and Gs
A.

If one now adds the # and "## cross sections together, the
dependence on GZ

A may be eliminated using the expres-
sion derived from the difference of the cross sections,
leaving a relation between FZ

1 and FZ
2 and, hence, a

relation between Gs
E and Gs

M:

# ( d%
dQ2 $#p& !

d%
dQ2 $ "##p& "

G2
F

4"
Q2

E2
#

#$

%1! &! W2

16&

%

$FZ
1 &2 !

$

!1! &! W2

16&

%$4"&2!2

G4
F

E4
#

Q4

1

W2$FZ
1 ! FZ

2 &2

!
$

!1% &! W2

16&

%

&$FZ
2 &2 ! 4&FZ

1F
Z
2

&

:

This relation can be expressed as a fourth-order polyno-
mial in Gs

E and Gs
M. The solutions to this expression are

contours in the $Gs
E;G

s
M& plane. A set of contours, using

the E734 data at Q2 " 0:5 GeV2, is shown in Fig. 2. The
dipole and Galster [22] forms are used for the electric
form factors of the proton and neutron, respectively:

Gp
E " 1

$1!Q2=M2
V&2

; Gn
E " % $n&

1! 5:6&
Gp

E:

These two relationships, one between Gs
M and Gs

A and
another between Gs

M and Gs
E, need some additional input

from another experiment before any actual values of Gs
E,

Gs
M, and Gs

A can be determined. The only existing addi-
tional experimental information in this Q2 range is the
HAPPEX result [17]. As displayed in Figs. 2 and 3,
combining the HAPPEX results at Q2 " 0:477 GeV2

with the E734 data at Q2 " 0:5 GeV2 gives two solutions
for Gs

E, Gs
M, and Gs

A, listed in Table II. This is the first
determination of Gs

E and Gs
A for Q2 ! 0. These two so-

lutions are very different from each other, and in a few
years one of them will be selected with a measurement at
a nearby Q2, as will be done in the G0 and E91-004
experiments at Jefferson Laboratory. However, there are

FIG. 1. Relation between Gs
A and Gs

M at Q2 " 0:5 $GeV&2.
The solid line is the central value, while the dotted lines
correspond to the total uncertainties in the E734 data. The
asymptotes occurring for Gs

A " a and Gs
M " b are indicated;

see text for details.

FIG. 2. The solid contours show the relation between Gs
M

and Gs
E at Q2 " 0:5 GeV2, using the E734 data. The dotted

contours correspond to the total E734 uncertainties. The
straight (solid and dotted) lines show the HAPPEX result at
Q2 " 0:477 GeV2.
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= - 0.196(127)(041)

Estimate of  GsA(0)

JLAB-THY-XXX

Neutral Weak Axial Form Factor and (Anti)Neutrino-Nucleon Scattering

Di↵erential Cross Section

Insights into the interplay of first principle lattice QCD calculations and experimental results can
unveil such nucleon properties whose onliest extractions with desired accuracy either from theory or
experiment is intricate. In this simple yet novel analysis, with a combination of the strange quark
form factors from lattice QCD calculation and the MiniBooNE experiment (anti)neutrino-nucleon
di↵erential cross section data in a kinematic region 0.3 . Q2 . 0.7 GeV2 where the nuclear e↵ects
are shown to be negligible, we obtain the most precise determination of the weak axial form factor
GZ

A in the range of 0  Q2  1 GeV2 with the weak axial charge GZ
A(0) = �0.752(56)(2). This

leads us to the reconstruction of the (anti)neutrino-nucleon di↵erential cross section and is shown
to reproduce the MiniBooNE and BNL E734 data very well, showing that the nuclear correction in
the (anti)neutrino-nucleus scattering in this kinematic region is very small.

Since this calculation predicts neutral current weak

axial form factor and (anti)neutrino-nucleon di↵eren-

tial cross section by combining lattice QCD and exper-

imental data , one has to be very careful about sources

of systematic errors and approach in a conservative

way. Therefore, we do not consider lattice data out-

side Q2
= 0.6 GeV

2
and (⌫̄)⌫N scattering di↵erential

cross section data in the region 0.27�0.65 GeV

2
where

Di↵erential cross section

d�⌫(⌫̄)N!⌫(⌫̄)N

dQ2
=

1
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C⌫(⌫̄)p,H(Q2
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dQ2

(1)

(Anti)Neutrino-nucleon neutral current elastic dif-

ferential cross-section can be written [1]:

d�

dQ2
=

G2
F

2⇡

Q2

E2
⌫

(A±BW + CW 2
) (2)

where the ± signs are for neutrino and anti-neutrino

scattering o↵ a free nucleon, respectively.
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1 )
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2 )
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+ (FZ

1 )
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+ ⌧(FZ

2 )

2
]
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(3)

FZ
1,2 are computed using lattice QCD results ofGs

E,M

from [2–4] and z-expansion to experimental nucleon
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shows that when ci = 1 the di↵ xsections from proton

in carbon and neutron on Carbon are the same
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A =

1

2

(�GCC
A +Gs

A) (5)

From extrapolation of GZ
A(Q

2
), we obtain GZ

A(0)

GZ
A(0) = �0.7517(560) (DipoleFit) (6)

GZ
A(0) = �0.7538(323)(048) (z � expansionFit)(7)

yielding

Gs
A(0) = �0.231(112) (DipoleFit) (8)

Gs
A(0) = �0.235(131)(019) (z � expansionFit) (9)

The isoscalar form factors F s
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From extrapolation of GZ
A(Q

2
), we obtain GZ

A(0)

GZ
A(0) = �0.751(56) (DipoleFit) (6)

GZ
A(0) = �0.7538(323)(048) (z � expansionFit)(7)

yielding

Gs
A(0) = �0.231(112) (DipoleFit) (8)

Gs
A(0) = �0.235(131)(019) (z � expansionFit) (9)

GCC
A (0) = 1.2723(23) (10)
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2

FIG. 2. XXX
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Gs
A(0) = 0.08(26) (11)

The isoscalar form factors F s
1 and F s

2 are the con-

tributions of strange quarks to the electric charge and

to the magnetic moment of the nucleon, whereas F s
A

is the strange quark contribution to the nucleon spin.

The expressions for these form factors are unknown,

but in analogy to the isovector form factors they are

usually represented in the dipole form with the same

FIG. 4. ZZZ.

FIG. 5. VVVV.

vector masses MV and MA as for the nonstrange form

factors.

EDIT: The correlated systematic errors are common

to both ⌫NCE and ⌫̄NCE scattering measurements.

Since both measurements are made using the same de-

tector and have the same ob- served final state, the

detector systematic errors ? the uncertainty in the op-

tical photon production and prop-agation, the error as-

sociated with the detector electron- ics, and the error

associated with the PMT response ? are categorized

as correlated errors.
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Precise estimate of NC weak axial form factor GZA 

Summary

Strange quark contribution cannot be ignored

Reconstruction of (anti)neutrino- nucleon diff. cross 
sections with correct prediction of GZA  and lattice input 
of GsE,M

This calculation can be used to disentangle nuclear  
effects in neutrino-nucleus scattering experiments



# CC /
NC

Reaction # CC /
NC

Reaction

Cabibbo–allowed quasi–elastic
scattering from nucleons

25 NC ⌫µn! ⌫µ�+⇡�

26 NC ⌫µn! ⌫µ�0⇡0

27 NC ⌫µn! ⌫µ��⇡+

1 CC ⌫µn! µ�p 28–38 Corresponding ⌫µ

processes(⌫µp! µ+n)
(Quasi–)elastic scattering from
nucleons

39 CC ⌫µp! µ�p⇢+(770)
40 CC ⌫µn! µ�p⇢0(770)

2 NC ⌫µn! ⌫µn 41 CC ⌫µn! µ�n⇢+(770)
(⌫µn! ⌫µn) 42 NC ⌫µp! ⌫µp⇢0(770)
⌫µp! ⌫µp 43 NC ⌫µp! ⌫µn⇢+(770)
(⌫µp! ⌫µp) 44 NC ⌫µn! ⌫µn⇢0(770)

Resonant single pion production 45 NC ⌫µn! ⌫µp⇢�(770)
46–52 Corresponding ⌫µ

processes3 CC ⌫µp! µ�p⇡+

4 CC ⌫µn! µ�p⇡0 53 CC ⌫µp! µ�⌃+K+

5 CC ⌫µn! µ�n⇡+ 54 CC ⌫µn! µ�⌃0K+

6 NC ⌫µp! ⌫µp⇡0 55 CC ⌫µn! µ�⌃+K0

7 NC ⌫µp! ⌫µn⇡+ 56 NC ⌫µp! ⌫µ⌃0K+

8 NC ⌫µn! ⌫µn⇡0 57 NC ⌫µp! ⌫µ⌃+K0

9 NC ⌫µn! ⌫µp⇡� 58 NC ⌫µn! ⌫µ⌃0K0

10–16 Corresponding ⌫µ

processes
59 NC ⌫µn! ⌫µ⌃�K+

60–66 Corresponding ⌫µ

processesMulti–pion resonant processes 67 CC ⌫µn! µ�p⌘
17 CC ⌫µp! µ��+⇡+ 68 NC ⌫µp! ⌫µp⌘
18 CC ⌫µp! µ��++⇡0 69 NC ⌫µn! ⌫µn⌘
19 CC ⌫µn! µ��+⇡0 70–72 Corresponding ⌫µ

processes20 CC ⌫µn! µ��0⇡+

21 CC ⌫µn! µ��++⇡� 73 CC ⌫µn! µ�K+⇤
22 NC ⌫µp! ⌫µ�+⇡0 74 NC ⌫µp! ⌫µK+⇤
23 NC ⌫µp! ⌫µ�0⇡+ 75 NC ⌫µn! ⌫µK0⇤
24 NC ⌫µp! ⌫µ�++⇡�

Table 4.5: Processes available with NUANCE. The numbers in the leftmost column indicate the
assigned reaction code in NUANCE.

The input variables for the code are: neutrino fluxes (described in Section 4.2.4), detector geom-

etry, and the medium chemical composition (CH
2

for the mineral oil). NUANCE generates neutrino

interactions inside the detector according to a probability for each of the processes based on their

cross-section prediction. The output variables are: type of interaction (CCQE, NCE, CCPi+, etc.),

its vertex, list of the final state particles produced in the interaction and their kinematics (direction

and energy). If an interaction happened on a bound nucleon inside a nucleus, there is a special

procedure to track the outgoing particles through the nucleus, as explained in Section 4.5.5.
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# CC /
NC

Reaction # CC /
NC

Reaction

76–78 Corresponding ⌫µ

processes
Coherent / di↵ractive ⇡
production

79 CC ⌫µn! µ�p⇡+⇡� 96 NC ⌫µA! ⌫µA⇡0

80 CC ⌫µn! µ�p⇡0⇡0 (⌫µA! ⌫µA⇡0)
81 NC ⌫µp! ⌫µp⇡+⇡� 97 CC ⌫µA! µ�A⇡+

82 NC ⌫µp! ⌫µp⇡0⇡0 (⌫µA! µ+A⇡�)
83 NC ⌫µn! ⌫µn⇡+⇡� ⌫–e elastic scattering
84 NC ⌫µn! ⌫µn⇡0⇡0 98 – ⌫µe! ⌫µe
85–90 Corresponding ⌫µ

processes
(⌫µe! ⌫µe)

⌫–e inverse µ decay
Deep Inelastic Scattering 99 CC ⌫µe! µ�⌫

e

91 CC ⌫µN! µX
92 NC ⌫µN! ⌫µX
93–94 Unused

95 CC Cabibbo–supp. QE
hyperon production:
⌫µp! µ+⇤
⌫µn! µ+⌃�
⌫µp! µ+⌃0

Table 4.5: Processes available with NUANCE. The numbers in the leftmost column indicate the
assigned reaction code in NUANCE.(Continued from the previous page)

The relative fractions for the types of neutrino scattering in MiniBooNE according to NUANCE

are shown in Fig. 4.17 before any cuts are applied. NCE correspond to ⇠ 16% of all neutrino

interactions in the MiniBooNE detector.

The important neutrino interaction channels for the NCE analysis consist of the signal (NCE,

NUANCE channel 2) and backgrounds (CCQE, NUANCE channel 1, and NC pion production,

NUANCE channels 6–9). These will be described in more details in Sections 4.5.2, 4.5.3 and 4.5.4.

The table of cross-section parameters and the assigned errors used in the MiniBooNE cross-

section model is shown in Table 4.6.

4.5.2 Neutral Current Elastic Scattering

The target for neutrino interactions in the MiniBooNE detector has a chemical formula CH
2

, which

has six bound protons and neutrons in the carbon atom and two free protons. NUANCE uses the

Llewellyn-Smith formalism [108] (described in Section 3.2) to model the scattering o↵ free protons.

For the neutrino scattering o↵ bound nucleons, the Smith-Moniz formalism [109] is used. The vector

nucleon form factors are taken in the form from the Ref.[110]. The nuclear e↵ects for bound nucleons
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Figure 1. Results of the determination of Gs
E , Gs

M , and Gs
A at individual values of Q2, and also from our global

fit. The separate determinations were done by Liu et al. [15] (green squares at 0.1 GeV2), Androić et al. [9] (blue
inverted triangles), Baunack et al. [12] (red squares at 0.23 GeV2), Ahmed et al. [7] (red triangles at 0.62 GeV2),
and Pate et al. [16] (open and closed circles). The preliminary results of our global fit (see text) are shown by the
solid line; the 70% confidence level limit curves for the fit are shown as the dashed line in the right-hand panel.
The vertical scale for Gs

A in the right-hand panel has been adjusted to accommodate the limit curves of the fit.

Strong limits are placed on the contribution of the strange quarks to the vector form factors throughout
this Q2 range. On the other hand, �S is also consistent with 0 but the uncertainty is very large because
there are no ⌫p or ⌫̄p elastic data at su�ciently low Q2 to constrain it. As a result the uncertainties
in the global fit to Gs

A are very much larger than the uncertainties in the separate determinations of
Gs

A in Figure 1. We cannot determine �S in this method until additional neutrino scattering data are
obtained at low Q2.

Table 1. Preliminary results for our 5-parameter fit to the 48 elastic neutrino- and PV electron-scattering data
points from BNL E734, HAPPEx, SAMPLE, G0, and PVA4.

Parameter Fit value
⇢s �0.071 ± 0.096
µs 0.053 ± 0.029
�S �0.30 ± 0.42
⇤A 1.1 ± 1.1
S A 0.36 ± 0.50

Pate, et al 

already good reasons to favor solution 1 over solution 2.
First of all, the value of Gs

A in solution 1 is consistent with
the estimated value of Gs

A!Q2 " 0# " !s " $0:14%
0:03 from deep-inelastic data [11], whereas that found in
solution 2 is much larger and of a different sign. Similarly,
the value of Gs

M in solution 1 is consistent with that
measured by SAMPLE, whereas the value in solution 2
is much larger in magnitude. However, the final determi-
nation must come from the additional data to be collected
at Jefferson Laboratory in the next few years.

The extensive program of measurements to be done
by the G0 Collaboration, when combined with the BNL
E734 data, will give the Q2 dependence of Gs

A in the
range 0:45–0:95 GeV2. The first phase of the G0 experi-
ment (in 2004) will measure forward scattering of pro-
tons (very similar to the HAPPEX measurement at
Q2 " 0:477 GeV2 and similarly insensitive to Ge

A) for
Q2 in the range 0:1–1:0 GeV2. That will yield two solu-
tions (in a similar fashion as Figs. 2 and 3) for each of
Gs

E, Gs
M, and Gs

A for several Q2 points in the range
0:45–0:95 GeV2. The second phase of G0 (in 2005–
2006) will observe backward scattered electrons, and
those data will select the set of solutions to use. The
uncertainty in the extraction of Gs

A from the E734 and
G0 data will be between %0:03 and %0:10, depending on
the value of Gs

M — these two are highly correlated, as

Fig. 1 shows. These data on Gs
A will be crucial in nailing

down the value of !s, which has been one of the goals of
hadronic spin physics for many years.
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W. R. Gibbs, and W. C. Louis for useful discussions;
M. D. Marx for providing a copy of E. Stern’s thesis;
and M. Diwan for providing E734 simulation code. This
work was supported by the U.S. Department of Energy.
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6 Measurement of neutrino-proton elastic scattering at MicroBooNE

MicroBooNE (http://www-microboone.fnal.gov/) is a new neutrino-scattering experiment under con-
struction at Fermilab, consisting of a 170-ton liquid-argon time projection chamber to be placed in the
path of a beam of approximately 1 GeV neutrinos. This detector is ideal for observing neutrino-proton
elastic scattering events, as low-energy protons from these events can travel several centimeters in liq-
uid argon; a measurement down to Q2 = 0.08 GeV2 is possible. A determination of Gs

A down to such
a low value of Q2 would permit a determination of �S . To estimate the level of uncertainty of such
a measurement, a simulation of 2 ⇥ 1020 protons-on-target was performed (about one running year),
using reasonable event selection cuts.1 These simulated MicroBooNE cross section measurements
were then fed back into our global fit program, and we observed the change in the uncertainties in the
fit parameters; see the table below. It is seen that a measurement of the strangeness axial form factor

Table 2. Improvement in uncertainties in fit parameters for Gs
A, when simulated MicroBooNE data are included

in the fit.

Parameter Existing Data Including MicroBooNE
�S ±0.42 ±0.038
⇤A ±1.1 ±0.38
S A ±0.50 ±0.071

at MicroBooNE can have a dramatic e↵ect on this analysis, and we look forward to a determination
of �S to come from this project in the next few years.
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The corresponding results, updated for the present
value of the weak mixing angle, are given in Table I. The
resulting prediction for Ge

A is consistent with both the
results of the SAMPLE deuterium measurement [16, 17],
which is particularly sensitive to the dominant isovector
axial component, as well as other theoretical models for
the anapole contributions [18, 19]. No evaluation of the

“many-quark” contribution of R(0)
A has been made in the

literature. We assume it is zero and assign the size of

“one-quark” value for R(0)
A as its uncertainty.

RT=1
A RT=0

A R(0)
A

one-quark −0.172 −0.253 −0.551

many-quark −0.086(0.34) 0.014(0.19) N/A

total −0.258(0.34) −0.239(0.20) −0.55(0.55)

TABLE II: The “one-quark” [8] and “many-quark” [15] cor-
rections to the axial charges, both in MS, as well as the com-
bined corrections.

The PV asymmetry for the neutron can be obtained
by exchanging the “p” and “n” indices on nucleon form
factors in Eqn. 2, and flipping the sign of the first isovec-
tor term in the expression for Ge

A in Eqn. 3. To first
order, the PV asymmetry from a deuterium target is a
cross-section weighted average of the proton and neutron
asymmetries, which leads to an enhancement of the con-
tribution of Ge

A and a suppression to the relative contri-
bution due to Gs

E and Gs
M . Obviously a nuclear correc-

tion needs to be applied in the analysis. In this note, for
the SAMPLE deuterium measurement, we shall adopt
the asymmetry expression given in [16].

The 4He nucleus is spin zero, parity even and isoscalar.
The PV asymmetry takes a much simpler form [4]:

AHe
PV =

GF Q2

4π
√

2α

×

(

4 sin2 θW (1 + RT=0
V ) +

2(1 + R(0)
V )Gs

E

Gp
E + Gn

E

)

, (5)

where the isoscalar RV factor is related to Rp
V and Rn

V
as

RT=0
V =

Rn
V − (1 − 4 sin2 θW )Rp

V

4 sin2 θW
. (6)

II. EXPERIMENTAL DATA

In this section, the world data of PV elastic scatter-
ing within a Q2 range from 0.07 to 0.5 (GeV/c)2 will
be summarized. These include SAMPLE-H [17, 20],
SAMPLE-D [16, 17], HAPPEx-H-99 [21], HAPPEx-H-
a [22], HAPPEx-He-a [23], HAPPEx-H-b and HAPPEx-
He-b [24], PVA4-H-a [25], PVA4-H-b [26], and the first
14 Q2 bins in G0 forward angle [27]. The kinematics,
targets, and the measured asymmetries in these exper-
iments are summarized in Table III. In column Aphys,

the first and second uncertainties for the G0 data are the
uncorrelated and correlated experimental uncertainties,
respectively. The values of ηE and ηM are also listed
in the table. In calculating them, we have adopted a re-
cent parametrization of the nucleon electromagnetic form
factors from Ref. [29]. For the SAMPLE deuterium mea-
surement, the ηM is taken from Ref. [16], whereas its ηE

is taken to be 1.79 according to the static approximation.

III. GLOBAL ANALYSIS

A. Anvs and Theoretical Uncertainties

We shall now present a combined analysis of the world
data aiming to extract Gs

E and Gs
M . A global fit, gen-

erally speaking, is obtained by simultaneously solving a
set of equations

mi ± σ(mi) = ti(a1, a2, · · · ) ± σ(ti) , (7)

where mi and ti(a1, a2, · · · ), respectively, are the mea-
sured and theoretical values for experiment i. In this
expression, σ(mi) and σ(ti) are their uncertainties, and
a1, a2, · · · are the free parameters one seeks to determine.
In our case,

mi = Ai
phys , ti = Anvs + ηEGs

E + ηMGs
M , (8)

with Gs
E and Gs

M being the free parameters. In the pre-
vious section, we have discussed the value and uncer-
tainty of Ai

phys, as well as ηE and ηM (Table III). For
each measurement, the values of Anvs can be also com-
puted straightforwardly using the formalism in Sec. I.
They are listed in Table IV. We again have used the
parametrization of the nucleon electromagnetic form fac-
tors from Ref. [29]. As mentioned, the Anvs for the SAM-
PLE deuterium measurement is calculated based on the
asymmetry expression in [16] with the theoretical value
of Ge

A.
The treatment of the theoretical uncertainties σ(ti) is

more subtle. σ(ti) receives dominant contributions from
the following sources: the nucleon axial form factor (Ge

A),

nucleon electromagnetic form factors (G(p,n)
E,M ), and nu-

clear corrections. Theoretical uncertainties from a given
source are correlated among different experiments. The
uncertainty in Ge

A can be calculated based on the un-
certainties in Tables I and I, and is dominated by the
uncertainty of the “many-quark” electroweak radiative
corrections on the RA factors in Table I. For the nucleon
electromagnetic form factors, based on the spread of the
world data (see, e.g. Ref. [29]), we estimate their relative
uncertainties as

σ(Gp
E)

Gp
E

= 2.5% ,
σ(Gp

M )

Gp
M

= 1.5% ,

σ(Gn
E)

Gn
E

= 15% and
σ(Gn

M)

Gn
M

= 1% ,
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theoretical calculation from Zhu et al. [16], assuming a dipole Q2-dependence.



Particle Lifetime (ns) Decay mode Branching ratio (%)

⇡+ 26.03 µ+ + ⌫µ 99.9877
e+ + ⌫e 0.0123

K+ 12.385 µ+ + ⌫µ 63.44
⇡0 + e+ + ⌫e 4.98
⇡0 + µ+ + ⌫µ 3.32

K0

L 51.6 ⇡� + e+ + ⌫e 20.333
⇡+ + e� + ⌫e 20.197
⇡� + µ+ + ⌫µ 13.551
⇡+ + µ� + ⌫µ 13.469

µ+ 2197.03 e+ + ⌫e + ⌫µ 100.0

Table 4.1: Particle lifetimes and neutrino-producing decay modes with their branching ratios con-
sidered in the simulation.

4.2.4 Neutrino Flux at the Detector and Systematic Errors

The neutrino flux at the detector is calculated via a Geant4 [87] Monte Carlo (MC) beam simulation.

The simulation includes a full beam geometry, specified by shape, location and material composition

of the BNB components. The MC generates protons upstream of the target and propagates them

through the target. In the target, p-Be interactions are simulated, creating particles of 7 types

(⇡±, K±, K0, p, n). The pion production cross-section used in the MC is based on measurements

from the HARP [88] and E910 [89] experiments. For K+ production, a fit to the results of several

experiments are used [90, 91, 92, 93, 94] with a parametrization to extrapolate the incident proton

energy to 8.89 GeV. The errors associated with the meson production are either estimated from

the fit to the production data (kaons) or taken from the experiment (pions). Pions (which are

responsible for the neutrinos dominating the total neutrino flux at the detector) have a production

error of ⇠ 5%.

Then the secondary particles are propagated through the rest of the BNB with a simulation

of their subsequent decays with the proper branching ratios, giving the appropriate kinematics for

the decay particles. Then, the decay particles are also propagated further. Whenever a neutrino is

produced in the process, it is checked whether its track would go through the MiniBooNE detector.

The histogram of neutrinos (antineutrinos) and their types for those that do go through the detector

is filled. This simulation produces the neutrino flux, which is shown in Fig. 4.5 for the neutrino mode.

The neutrino flux histograms are available in Ref.[95]. About 97% of the ⌫µ flux is from the ⇡+

decay and ⇠ 3% from K+ decay.
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with the proper charge factors included. After including the
charge factors and using the results from [24] and Eqs. (9)
and (12) we obtain

μsM ¼ −
1

3
Gs

Mð0Þ

¼ 0.021ð5Þð3ÞμN; ð13Þ

μlight-seaM ¼
!
2

3
−
1

3

"
Glight-sea

M ð0Þ

¼ −0.043ð10Þð08ÞμN: ð14Þ

Similarly,

hρ2s iE ¼ − 1

3
hr2s iE

¼ 0.0014ð05Þð05Þ fm2; ð15Þ

hρ2light-seaiE ¼
!
2

3
−
1

3

"
hr2light-seaiE

¼ −0.0203ð53Þð49Þ fm2: ð16Þ

Combining results with the strange quark magnetic
moment and charge radius, we obtain the total contribution
from the light and strange disconnected-sea quarks to the
nucleon magnetic moment and charge radius,

μMðDIÞ ¼ −0.022ð11Þð09ÞμN; ð17Þ

hr2iEðDIÞ ¼ −0.019ð05Þð05Þ fm2: ð18Þ

Comparing with the PDG values of nucleon magnetic
moments [5], our results indicate that disconnected-sea
quarks contribute ∼1% to the nucleon magnetic moments,
namely, a negative 0.8(5)% and a 1.2(7)% to the proton and
neutron magnetic moments, respectively. Keeping in mind
that there is a 4% discrepancy between the measurement
of proton charge radius from the muonic Lamb shift

experiment and the electron-proton scattering experiments,
our finding in the present work reveals that the lattice
calculation of the DI gives a negative 2.5(9)% contribution
to the proton mean square charge radius. This is about 1=3
of the discrepancy between the proton mean square charge
radii measured in the electron-proton scattering and the
muonic atom. Thus, it is important to have the DI included
when the lattice calculation of the proton charge radius is
carried out. Although a complete lattice QCD calculation
including the connected and disconnected insertions at the
physical point is required to draw any definitive conclusion
about the accurate percentage of the disconnected-sea
quarks contribution to a proton charge radius, this calcu-
lation clearly indicates that there will be a shift toward a
smaller value of the proton charge radius when the light
disconnected-sea quarks contribution is included. However,
the disconnected-sea quarks contribution to the neutron
mean square charge radius can have a significant effect,
namely 16.3(6.1)% compared to the experimental neutron
mean square charge radius hr2ni ¼ −0.1161ð22Þ fm2 [5], in
obtaining a value closer to the experimental value.
From the z-expansion fit parameters in Sec. IV, we can

now interpolate the light and strange disconnected-sea
quarks contributions to the nucleon electromagnetic form
factors. Although the largest available momentum transfer
we have on the 24I and 32I ensemble isQ2 ∼ 1.3 GeV2, the
largest momentum transfer available on the 48I ensemble is
Q2 ∼ 0.5 GeV2. Therefore, we note that the extrapolation of
the nucleon EMFF starts to break down afterQ2 ∼ 0.4 GeV2

for the 48I ensemble, and we constrain the extrapolations of
the 48I ensembleEMFFup toQ2 ¼ 0.5 GeV2. Theglobal fit
results of the strange quark EMFFs have been obtained from
[43], and we use similar empirical formulas as Eqs. (8)
and (11) to estimate the light-sea quarks contribution to the
nucleon EMFF in the continuum limit and at the physical
point. The contributions of GE;MðQ2Þ (DI) to the nucleon
electromagnetic form factors appear with charge factors.
Therefore, we present the results in Fig. 8 with systematics

(a) (b)

FIG. 8. Light and strange disconnected-sea quarks contributions to the nucleon electromagnetic form factors at the physical point and
in the continuum limit. Charge factors are included in the form factor calculations. The outer error bars in the data points include the
systematic uncertainties in the calculations.
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We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the
nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD
calculation includes ensembles across several lattice volumes and lattice spacings with one of the
ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic
moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum
extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light
and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μMðDIÞ ¼
−0.022ð11Þð09Þ μN and to the nucleon mean square charge radius is hr2iEðDIÞ ¼ −0.019ð05Þð05Þ fm2

which is about 1=3 of the difference between the hr2piE of electron-proton scattering and that of a muonic
atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The
most important outcome of this lattice QCD calculation is that while the combined light-sea and strange
quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution
to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the
neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by
performing global fits, we also give predictions of the light and strange disconnected-sea quarks
contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum
and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.
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I. INTRODUCTION

Nucleon electromagnetic form factors of a hadron are
of substantial interest because they are related to the
dynamical content of the electric and magnetic currents
distribution inside the hadron and characterize the internal
structure of a nonpointlike particle. The quest for a
detailed quantitative understanding of the nucleon electro-
magnetic form factors is an active field of the experi-
mental nuclear physics, lattice QCD simulations, and
other model calculations. However, some unsolved ques-
tions still remain regarding the nucleon electromagnetic
form factors and their properties at low momentum
transfer ðQ2Þ. Detailed reviews of various experimental
results and model calculations can be found in [1,2]
and the references therein. The most recent surprising
discrepancy of the proton charge radius measured from
the Lamb shift in muonic hydrogen [3,4] differs by more
than 5σ from the radius extracted with 1% precision using
the electron-proton scattering measurements and hydro-
gen spectroscopy. While the current Committee on Data
for Science and Technology (CODATA) value of proton
charge radius is rpE ¼ 0.8751ð61Þ fm [5], the most recent
muonic hydrogen Lamb shift experiment measures

rpE ¼ 0.84087ð39Þ fm [6] which is 4% smaller than and
differs by 7σ from the CODATA value. Other than the
possibility that one of the proton charge radius extractions
is wrong or involves considerable systematic uncertainties,
the consequence of the “proton charge radius puzzle” can
have serious impacts such as a new physics signature,
anomalous QCD corrections, a 5σ adjustment of the
Rydberg constant (in the absence of new physics explan-
ations) which is measured with an accuracy of about 5 parts
per trillion, and/or a revision of sources of systematic
uncertainties in themeasurements of neutrino-nucleus scatter-
ing observables. Recent results and reviews of the proton
charge radius puzzle can be found in Refs. [7–9].
A complete first-principles lattice QCD calculation of

the nucleon magnetic moment and charge radius including
both the valence and the connected-sea quarks, called
connected insertion (CI), and the disconnected-sea quarks
contribution, called disconnected insertion (DI), is of
immense importance and is not yet present in the literature.
By disconnected insertions, we mean the nucleon matrix
elements involving self-contracted quark graphs (loops),
which are correlated with the valence quarks in the nucleon
propagator by the fluctuating background gauge fields.
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with the proper charge factors included. After including the
charge factors and using the results from [24] and Eqs. (9)
and (12) we obtain

μsM ¼ −
1

3
Gs

Mð0Þ

¼ 0.021ð5Þð3ÞμN; ð13Þ

μlight-seaM ¼
!
2

3
−
1

3

"
Glight-sea

M ð0Þ

¼ −0.043ð10Þð08ÞμN: ð14Þ

Similarly,

hρ2s iE ¼ − 1

3
hr2s iE

¼ 0.0014ð05Þð05Þ fm2; ð15Þ

hρ2light-seaiE ¼
!
2

3
−
1

3

"
hr2light-seaiE

¼ −0.0203ð53Þð49Þ fm2: ð16Þ

Combining results with the strange quark magnetic
moment and charge radius, we obtain the total contribution
from the light and strange disconnected-sea quarks to the
nucleon magnetic moment and charge radius,

μMðDIÞ ¼ −0.022ð11Þð09ÞμN; ð17Þ

hr2iEðDIÞ ¼ −0.019ð05Þð05Þ fm2: ð18Þ

Comparing with the PDG values of nucleon magnetic
moments [5], our results indicate that disconnected-sea
quarks contribute ∼1% to the nucleon magnetic moments,
namely, a negative 0.8(5)% and a 1.2(7)% to the proton and
neutron magnetic moments, respectively. Keeping in mind
that there is a 4% discrepancy between the measurement
of proton charge radius from the muonic Lamb shift

experiment and the electron-proton scattering experiments,
our finding in the present work reveals that the lattice
calculation of the DI gives a negative 2.5(9)% contribution
to the proton mean square charge radius. This is about 1=3
of the discrepancy between the proton mean square charge
radii measured in the electron-proton scattering and the
muonic atom. Thus, it is important to have the DI included
when the lattice calculation of the proton charge radius is
carried out. Although a complete lattice QCD calculation
including the connected and disconnected insertions at the
physical point is required to draw any definitive conclusion
about the accurate percentage of the disconnected-sea
quarks contribution to a proton charge radius, this calcu-
lation clearly indicates that there will be a shift toward a
smaller value of the proton charge radius when the light
disconnected-sea quarks contribution is included. However,
the disconnected-sea quarks contribution to the neutron
mean square charge radius can have a significant effect,
namely 16.3(6.1)% compared to the experimental neutron
mean square charge radius hr2ni ¼ −0.1161ð22Þ fm2 [5], in
obtaining a value closer to the experimental value.
From the z-expansion fit parameters in Sec. IV, we can

now interpolate the light and strange disconnected-sea
quarks contributions to the nucleon electromagnetic form
factors. Although the largest available momentum transfer
we have on the 24I and 32I ensemble isQ2 ∼ 1.3 GeV2, the
largest momentum transfer available on the 48I ensemble is
Q2 ∼ 0.5 GeV2. Therefore, we note that the extrapolation of
the nucleon EMFF starts to break down afterQ2 ∼ 0.4 GeV2

for the 48I ensemble, and we constrain the extrapolations of
the 48I ensembleEMFFup toQ2 ¼ 0.5 GeV2. Theglobal fit
results of the strange quark EMFFs have been obtained from
[43], and we use similar empirical formulas as Eqs. (8)
and (11) to estimate the light-sea quarks contribution to the
nucleon EMFF in the continuum limit and at the physical
point. The contributions of GE;MðQ2Þ (DI) to the nucleon
electromagnetic form factors appear with charge factors.
Therefore, we present the results in Fig. 8 with systematics

(a) (b)

FIG. 8. Light and strange disconnected-sea quarks contributions to the nucleon electromagnetic form factors at the physical point and
in the continuum limit. Charge factors are included in the form factor calculations. The outer error bars in the data points include the
systematic uncertainties in the calculations.
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functions due to the different scaling behavior of Ψþ and
Ψ−, Eq. (14), with orbital angular momentum L ¼ 0 and
L ¼ 1 respectively. As a result, while the leading scaling
behavior of the Dirac form factor is 1=Q4, the leading
scaling behavior of the Pauli form factor is 1=Q6 because of
the additional z2-factor in (18). Remarkably, the correct
large-Q2 power scaling from hard scattering is incorporated
in the covariant spin structure of the AdS expressions for
the nucleon FFs.

IV. A SIMPLE LIGHT-FRONT HOLOGRAPHIC
MODEL FOR NUCLEON FORM FACTORS

Following Ref. [55] we consider a simplified model
where we only include the first two components in a Fock
expansion of the nucleon LF function with no constituent
dynamical gluons [54],

jNiL¼0 ¼ ψL¼0
qqq=Njqqqiτ¼3 þ ψL¼0

qqqqq̄=N jqqqqq̄iτ¼5

þ # # # ; ð19Þ

jNiL¼1 ¼ ψL¼1
qqq=Njqqqiτ¼4 þ ψL¼1

qqqqq̄=N jqqqqq̄iτ¼6

þ # # # ; ð20Þ

with N ¼ p, n. The additional qq̄ contribution to the
nucleon wave function from higher Fock components is
relevant at larger distances and is usually interpreted as a
pion cloud.
We have performed a systematic evaluation of the

relevance of higher Fock components in the nucleon FFs
by extending the previous results in Ref. [34] for the Dirac
and Pauli FFs. For example, for the proton Dirac FF we
have determined the relevance of higher Fock components
by writing Fp

1 ðQ2Þ ¼ ð1 − αpÞFi¼3ðQ2Þ þ αpFi¼5ðQ2Þ,
where i − 1 is the number of poles in the expansion (9)
and αp is the twist-5 probability αp ¼ Pα

qqqqq̄=p. Therefore,
1 − αp ¼ Pα

qqq=p is the valence twist-3 probability for the
spin-nonflip EM transition amplitude. It is found that
Pqqqqq̄=p is very small, of the order of 1%. Likewise, the
contribution of higher Fock components to the Dirac
neutron FF is of the order of 2% and does not change
significantly our previous results [34]. We thus drop the
contribution of the higher Fock components to the spin-
nonflip nucleon FFs in the rest of our analysis; namely, we
take Pα

qqq=p ¼ Pα
qqq=n ¼ 1, which gives us a considerable

simplification. Within this approximation, thus considering
only the effect of higher qq̄ Fock components to the spin-
flip nucleon FFs, we write

Fp
1 ðQ2Þ ¼ Fi¼3ðQ2Þ; ð21Þ

Fp
2 ðQ2Þ ¼ χp½ð1 − γpÞFi¼4ðQ2Þ þ γpFi¼6ðQ2Þ' ð22Þ

for the proton, where χp ¼ μp − 1 ¼ 1.793 is the proton
anomalous moment, and

Fn
1ðQ2Þ ¼ −

1

3
½Fi¼3ðQ2Þ − Fi¼4ðQ2Þ'; ð23Þ

Fn
2ðQ2Þ ¼ χn½ð1 − γnÞFi¼4ðQ2Þ þ γnFi¼6ðQ2Þ' ð24Þ

for the neutron, with χn ¼ μn ¼ −1.913, and where γp;n are
the higher Fock probabilities for the L ¼ 0 → L ¼ 1 spin-
flip nucleon EM form factors. Equations (21) and (23) are
the exact SU(6) results for the spin-nonflip nucleon FFs
(13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating
the higher Fock components, properly normalized to the
nucleon anomalous magnetic moments.
The inclusion of higher Fock states is not of much help in

describing well the available data for the neutron Dirac
form factor. Indeed the zero value of the neutron FF at zero
momentum transfer comes from the cancellation of two
normalizable wave functions, which vanishes at Q2 ¼ 0.
One could thus expect that in contrast to the other three
FFs, namely Fp

1, F
p
2 and Fn

2 , second order effects are more
important. Therefore our results for the neutron FFs are, in
principle, less reliable than our predictions for the proton
FFs, especially for the low Q2 region which is more
sensitive to the leading cancellations. With this possible
shortcoming of the model in mind, we are thus led to
introduce one additional parameter r, which is required
phenomenologically. With this free parameter r we modify
the neutron effective charges in Eq. (16) as

gnþ ¼ −
1

3
r; gn− ¼ 1

3
r; ð25Þ

and thus the expression for the neutron Dirac FF

Fn
1ðQ2Þ ¼ −

1

3
r½Fτ¼3ðQ2Þ − Fτ¼4ðQ2Þ': ð26Þ

The value r ¼ 2.08 is required to give a proper matching to
the available experimental data as shown in Fig. 1. Also,
keeping in mind that the gauge-gravity duality does not
determine the spin-flavor structure of the nucleons, which
is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free
parameter r from unity may be interpreted as a SU(6)
symmetry-breaking effect in the neutron Dirac FF. Indeed,
the breaking of SU(6) flavor-spin symmetry has also been
observed in a meson cloud model where mixed symmetry
in the nucleon wave function was included to reproduce the
experimental data [69]. The effect of SU(6) symmetry
breaking on the neutron FFs was also investigated within a
LF constituent quark model in Ref. [70].
All the results presented here correspond to the value of

the universal confinement scale determined from the mass
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their
flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD)We show that
the inclusion of the higher Fock components jqqqqq̄i has a significant effect on the spin-flip elastic Pauli
form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front
holographic QCD results for the proton and neutron form factors at any momentum transfer range,
including asymptotic predictions, and show that our results agree with the available experimental data with
high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state
of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic
radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters
needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities
of higher Fock states for the spin-flip form factor and a phenomenological parameter r, required to account
for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are
normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure
for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the
correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.
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I. INTRODUCTION

The spacelike (SL) electromagnetic form factors of the
proton and neutron obtained in electron-nucleon elastic
scattering are key measures of the fundamental structure
of hadrons. The helicity-conserving and helicity-flip current
matrix elements required to compute the Dirac F1ðQ2Þ and
Pauli F2ðQ2Þ form factors, respectively, have an exact
representation in terms of the overlap of the nonperturbative
hadronic light-front wave functions (LFWFs) [1], the eigen-
solutions of the QCD light-front Hamiltonian—the Drell-
Yan-West formulas [2,3]. The squares of the same hadronic
LFWFs, summed over all Fock states, underly the structure
functions measured in deep inelastic lepton-nucleon scatter-
ing. A central goal of hadron physics is to not only
successfully predict these dynamical observables but to also
accurately account for the spectroscopy of hadrons.
The quest for a detailed quantitative understanding of the

nucleon form factors is an active field in hadronic physics.
A wide variety of models has been proposed to describe
the nucleon form factors. However, in most of these
approaches there has been no attempt to understand the
observed hadron spectroscopy. Furthermore, a consensus
among different phenomenological models and parametri-
zations which describe the nucleon form factors has not yet
been achieved, especially for the neutron Dirac and Pauli

electromagnetic form factors, and the nucleon timelike
(TL) form factors.
Detailed reviews of the experimental results and models

can be found in Refs. [4,5]. It should be noted that
inconsistencies in the extraction of the data appear in the
proton electric to magnetic Sachs form factor (FF) ratio
RpðQ2Þ ¼ μpG

p
EðQ2Þ=Gp

MðQ2Þ, when one compares
double polarization experiments [6–9], in which the ratio
Rp decreases almost linearly for momentum transfer
Q2 > 0.5 GeV2, with the results obtained from the
Rosenbluth separation method [10–21] in which Rp
remains constant in the SL region. Predictions for different
combinations of the neutron FFs are even more puzzling to
explain using phenomenological models. A further limita-
tion is that experimental data for the neutron FFs are not
available in the large Q2 ¼ −q2 regime. Another challenge
is to describe the modulus of the electric to magnetic Sachs
FF ratio jGp

E=G
p
Mj measured by the PS170 experiment at

LEAR [22] and by the BABAR Collaboration in the TL
domain [23] above the physical threshold q2phys ¼ 4m2

p,
where mp is the proton mass, at which proton-antiproton
pairs are produced at rest in their center of mass system, and
where strong threshold effects are also important.
The recent 12 GeVenergy upgrade of Jefferson Lab will

bring a wealth of high precision measurements at largerQ2.
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Analysis on 32I Ensemble 

*Only 100 configs used for source-sink separation t=14
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Factorization Theorem
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‣ Hadronic tensor 

‣ Leptonic tensor

PDFs from DIS

6

final state X . If the target hadron remains intact, the process is elastic scattering. The

deep inelastic region is where the target hadron is blown apart by the virtual photon, and

fragments into many particles. I will only discuss the case of fixed-target deep inelastic

scattering in detail. Deep inelastic scattering will soon be studied at HERA by colliding an

electron beam with a proton beam. The kinematics for such colliding beam experiments

is left as an exercise for the reader.

The basic diagram for deep inelastic scattering is show schematically in fig. 1. There

are numerous kinematic variables which are used in the discussion of deep inelastic scat-

tering. In the definitions given below, I will pick the ẑ axis to be along the incident lepton

beam direction. (Warning: in later sections, I will pick the ẑ axis to be along the direction

of the virtual photon.) The kinematic variables are:

p

k', E'

k, E

q = k - k'

X

FIGURE 1.

The basic diagram for deep inelastic lepton hadron scattering. The virtual photon mo-

mentum is q. The final hadronic state is not measured, and is denoted by X.

Kinematic Variables

M The mass of the target hadron. The most important case is for a proton or neutron

target, in which case M is the nucleon mass.

E The energy of the incident lepton.

k The momentum of the initial lepton. k = (E, 0, 0, E), if the lepton mass is neglected.

Ω The solid angle into which the outgoing lepton is scattered.

3
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‣ Lorentz decomposition of matrix element 

‣ Light-cone

Pseudo-PDFs [A. Radyushkin (2017)]

30

M↵(z, p) = hp| (z)�↵Wz(z, 0) (0)|pi
= 2p↵Mp(�(zp),�z2) + z↵Mz(�(zp),�z2).

M+(z, p) = 2p+Mp(�p+z�, 0)

M
p

(�p+z�, 0) =

Z 1

�1
dxe

�ixp+z�
f(x)

p = (p+, 0, 0?), z = (0, z�, 0?)

light-cone PDF



‣ Ioffe time PDF 

‣              limit

Pseudo-PDFs

[B. L. Ioffe (1969)]

31

Mp(�zp,�z2) Lorentz invariant. Computable in any frame.
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Ioffe time PDF pseudo-PDF

Pseudo-PDF has                      support.�1  x  1 [A. Radyushkin (2017)]
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‣ Quasi-PDF case 

‣ Better choice

Pseudo-PDFs

32

M3(z, p) = 2p3Mp(�z3p3,�z23) + z3Mz(�z3p3,�z23).
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‣ Ratio 

‣ Scale evolution (DGLAP)

Pseudo-PDFs

33
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3)

Mp(0, z2
3) ���!

z2
3!0

1 regular in the limit

By taking the ratio:

  - smaller scaling violation in

  - power divergence is canceled and well defined in taking continuum 
limit
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Pseudo v.s. Quasi

35

[Orginos et al. (2017)]

Pseudo-PDFs
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x
Figure 4. Left: Data points for Re M (⌫, z2

3) with z3  10a evolved to z3 = 2a as described in the text. Right:
Curve for uv(x) � dv(x) built from the evolved data shown in the left panel and treated as corresponding to the
µ2 = 1 GeV2 scale; then evolved to the reference point µ2 = 4 GeV2 of the global fits.

are prone to larger systematic errors that need to be studied more carefully. However, it is clear that
in order to obtain results that reproduce the experimentally determined PDFs one needs to perform
more realistic dynamical fermion calculations including quarks with physical masses as well as treat
evolution at higher accuracy than the one we used here.

4 Summary

In this talk a new approach for obtaining PDFs from lattice QCD calculations is presented. We in-
troduce a ratio of matrix elements that takes care of UV divergences allowing for a well defined
continuum limit. In addition, this ratio has improved convergence properties to the light-cone limit al-
lowing for a practical method for performing these calculations with realistic computational resources.
We tested this approach in the quenched approximation in order to understand the basic features of
the method and work out the details of the methodology. An important finding of our calculations is
that our data are consistent with the well known scale evolution of the PDFs. Armed with the lessons
obtained by the quenched approximation, we are currently applying this approach to realistic lattice
QCD calculations aiming towards obtaining a precise determination of PDFs from lattice QCD.

Acknowledgments

One of us (AR) thanks V. Braun and X. Ji for discussions and comments. We are indebted to Nobuo
Sato for the help in comparison of our results with global fits. This work is supported by Je↵er-
son Science Associates, LLC under U.S. DOE Contract #DE-AC05-06OR23177. KO and JK was
supported in part by U.S. DOE grant #DE-FG02-04ER41302, and in part by STFC consolidated
grant ST/P000681/1. AR was supported in part by U.S. DOE Grant #DE-FG02-97ER41028. SZ ac-
knowledges support by the National Science Foundation (USA) under grant PHY-1516509. JK was
supported in part by a DOE SCGSR fellowship at JLab. This work was performed in part using com-
puting facilities at the College of William and Mary which were provided by contributions from the
National Science Foundation (MRI grant PHY-1626177), the Commonwealth of Virginia Equipment
Trust Fund and the O�ce of Naval Research. In addition, this work used resources at NERSC, a DOE
O�ce of Science User Facility supported by the O�ce of Science of the U.S. Department of Energy
under Contract #DE-AC02-05CH11231.

q

v

(x) ⇠ x

a(1 � x)b

Functional form is assumed.

- By taking the ratio, pseudo-PDF is better for renormalization.                  
- Small-x region requires large              ; eventually large momentum data 
is required (?) 

⌫ = �pz

M
p

(⌫,�z

2) =

Z 1

�1
dxe

ix⌫P(x,�z

2).





Observables with ONE identified hadron 

! DIS cross section is infrared divergent, and nonperturbative! 

�DIS
`p!`0X(everything)

Identified initial-state  
hadron-proton! 

�DIS
`p!`0X(everything) / … + + +

+

! QCD factorization (approximation!) Color entanglement 
Approximation 

Quantum Probabilities 
Structure 

Controllable 
Probe 

Physical 
Observable 

bT

kT
xp

bT

kT
xp

⊗
1 O
QR
! "

+ # $
% &xP, kT 

�DIS
`p!`0X(everything) =



Quasi-Distribution of Pion

LP3, arXiv:1804.01483m⇡ ' 300MeV



11
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FIG. 8. Nucleon boost momentum dependence of the
matched unpolarized isovector PDFs: the dotted-purple,
dashed cyan, and solid-black lines correspond to the nucleon
momentum Pz to be 1.7, 2.15, and 2.6 GeV, respectively.

FIG. 9. Our final PDF at µ = 3 GeV calculated from
RI/MOM quasi-PDF at nucleon momentum Pz = 2.6 GeV:
Comparing with CT14nnlo (90CL) [76], NNPDF3.1 (68CL)
[77], and MMHT2014 (68CL) [78]. Our result agrees with the
global-analysis within our uncertainties for the most x region.

which agrees with the PDF from experimental global-
analysis, shows promising signs that the LaMET will lead
us to a precision lattice calculation of parton physics in
the future.
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APPENDIX

A. One-loop quasi-PDF with �

↵ in general covariant gauge

The gluon propagator in the general covariant gauge is

iDµ⌫

⌧

(k) = � i

k2


gµ⌫ � (1� ⌧)

kµk⌫

k2

�
. (42)

For general � = �↵, the one-loop result can be expressed as

q̃(1)(x, p, ⇢) = Tr
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FIG. 4. The renormalized quasi-PDF matrix elements
with Pz = 10⇡/L, using the minimal projection with
pz={0, 10}⇡/L and two values of µR.

where C 0 = C(↵
s

! �↵
s

). We estimate the error due
to inverting the factorization formula this way by first
applying Eq. (5), and then Eq. (40) back to PDF from
a global-analysis [76]. Ideally, this shall reproduce the
original PDF. However, since we are only accurate up
to O(↵

s

), the two results will di↵er, and the di↵erence
gives us a good estimate of the systematic error coming
from the inversion, see Fig. 5. We see that the error
becomes larger when |x| is small. There are more sophis-
ticated methods to invert the factorization, such as using
a recursion procedure. However, we see in Fig. 6 that
the systematic error caused by the matching procedure
is smaller than other sources of systematics in most re-
gions. Therefore, The systematic error will be dominated
by other sources.

There are two unphysical scales pR
z

and µ
R

whose
dependence should be cancelled out in the final result
for the PDF. However, since the renormalization of the
quasi-PDF on the lattice is nonperturbative, while the
matching coe�cient is only calculated at one-loop order,
there will be residual dependence on these two scales after
the perturbative matching. We choose the central value
of the PDF to be matched from the RI/MOM quasi-PDF
at pR

z

= 2.15 GeV and µ
R

= 3.7 GeV. To estimate the
residual pR

z

and µ
R

dependence, we vary pR
z

from 1.3 to 3
GeV and µ

R

from 2.3 to 3.7 GeV, and use the di↵erence
of these matched PDFs as the systematics of the residual

FIG. 5. The upper (lower) figure shows e↵ects of inversion
of matching using minimal (

/

p) projection. The solid-black,
dotted-red, dotted-blue, and dot-dashed-green lines repre-
sent CT14nnlo PDF, apply inverse matching from CT14nnlo
PDF [76] to quasi-PDF, apply matching again to get back to
the PDF, the di↵erence between PDF with iterative matching
and the original CT14nnlo PDF. These plots show that the
method we used to invert the matching formula is less reliable
in small |x| region. The di↵erence shown by the dot-dashed-
green curve is taking into account into our systematic error.
Note that using

/

p projection causes a bigger error.

dependence of unphysical scales, see Fig. 6.
We observe that the systematic errors from the match-

ing and residual dependence on unphysical scales in /p
projection is usually bigger than that in minimal projec-
tion. This seems to indicate that the minimal projection
is a better projection which manifestly reduces the sys-
tematics in one-loop matching. Therefore we choose the
minimal projection for our analysis below.

IV. PDF RESULT AND DISCUSSIONS

We use the “derivative” method proposed in our ear-
lier work [37] to improve the truncation error due to the
Fourier transformation into x space; that is, we take the
derivative of the renormalized nucleon matrix elements
@
z

h̃
R

(z) where a is the lattice spacing. The Fourier ex-
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B. Comparison to the pseudo-PDF approach

Recently, the pseudo-PDF approach [50–52] was pro-
posed as an alternate way to extract PDF from the same
spatial correlator on the lattice. In this approach, the
spatial correlator h̃(z2, zP

z

, a�1) is considered as a func-
tion of Lorentz scalars z2 and zP

z

, and one can form a

ratio

R(z2, zP
z

) ⌘ h̃(z2, zP
z

, a�1)/h̃(z2, 0, a�1) . (47)

At short distance |z| ⌧ ⇤�1

QCD

, the ratio has a weak de-

pendence on z2 that can be described by an Altarelli-
Parisi type of evolution [13, 50, 54], and it can be matched
to the PDF through a factorization formula that has been
proven to be equivalent to the large-momentum factor-
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Hadronic matrix elements in coordinate-space —

We consider single-hadron matrix elements of renormal-
ized nonlocal operators On(ξ),

σn(ω, ξ
2, P 2) = ⟨P |T {On(ξ)}|P ⟩, (1)

where the subscript n is a label for different operators, T
stands for time-ordering, P is the hadron momentum, ξ
with ξ2 ̸= 0 is the largest separation of all fields in the
operator On, the Lorentz scalar ω ≡ P · ξ, and renormal-
ization scale for On(ξ) is suppressed.
One choice for On(ξ) is the dimension-2 operators for

correlations of two currents with a separation ξ,

Oj1j2(ξ) ≡ ξdj1
+dj2

−2 Zj1 Zj2j1(ξ) j2(0) , (2)

where dj and Zj are the dimension and renormalization
constant of the current j, respectively, and the overall
dimensional factor is introduced so that the matrix ele-
ments in Eq. (1) is dimensionless with our normalization,
⟨P |P ′⟩ = (2EP )(2π)3δ3(P − P ′). With the scalar and
vector currents, for example, we could have,

OS(ξ) = ξ4Z2
S[ψqψq](ξ) [ψqψq](0) , (3a)

OV (ξ) = ξ2Z2
V [ψq/ξψq](ξ) [ψq/ξψq](0) , (3b)

OṼ (ξ) = −
ξ4

2
Z2
V [ψqγνψq](ξ) [ψqγ

νψq](0) , (3c)

OV ′(ξ) = ξ2Z2
V ′ [ψq/ξψq′ ](ξ) [ψq′/ξψq](0) , . . . , (3d)

where ξ4 ≡ (ξ2)2, q = u, d, s, · · · stands for a quark with
a definite flavor and q′ for a quark with a different flavor,
the subscripts, S, V and V ′ refers to scalar, vector and
flavor-changing vector currents, respectively, and “. . . ”
indicates for other possible combinations of two currents
including the gluonic current, e.g., jµν ∝ FµρF ρ

ν . Ma-
trix elements constructed from operators in Eq. (3) sat-
isfy the relation

σ∗
n(ω, ξ

2, P 2) = σn(−ω, ξ
2, P 2). (4)

Instead of the correlation of two currents, the nonlo-
cal operator in Eq. (1) could also be made of the cor-
relation of gauge dependent field operators with proper
gauge link(s), e.g.,

Oq(ξ) =Zq(ξ
2)ψq(ξ) /ξΦ(ξ, 0)ψq(0) , (5)

where Φ(ξ, 0) = Pe−ig
∫

1

0
ξ·A(λξ) dλ is the path ordered

gauge link, Zq(ξ2) is the renormalization constant of this
operator, depending on ξ2 [27], and matrix element con-
structed from which satisfies the relation

σ∗
n(ω, ξ

2, P 2) = −σn(−ω, ξ
2, P 2). (6)

Besides scalar operators constructed above, we can also
construct vector or tensor operators, e.g.,

Oµν(ξ) = ξ4Z2
V [ψqγµψq](ξ) [ψqγνψq](0) . (7)

To simply the discussion, we will consider only scalar
operators in the following, although tensor operators can
be studied following the same way.
Factorization — We show that σn defined in Eq. (1)
could be factorized into PDFs with perturbatively calcu-
lable coefficients so long as ξ2 is sufficiently small,

σn(ω, ξ
2,P 2) =

∑

a

∫ 1

−1

dx

x
fa(x, µ

2)

×Ka
n(xω, ξ

2, x2P 2, µ2) +O(ξ2Λ2
QCD) ,

(8)

where µ is the factorization scale, Ka
n are perturba-

tively calculable hard coefficients, and fa is PDF of flavor
a = q, g with anti-quark PDFs expressed by quark PDFs
using the relation fā(x, µ2) = −fa(−x, µ2).
Let ξ2 be small but not vanishing, and applying oper-

ator product expansion (OPE) to the nonlocal operator
On(ξ) in Eq. (1) [37], we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) ξν1 · · · ξνJ

× ⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ , (9)

where µ is the renormalization scale. The O(J,a)
ν1···νJ (µ

2) is
a local, symmetric and traceless operator of spin J with
“a” labeling different operators of the same spin, and

⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ = 2A(J,a)(µ2)

× (Pν1 · · ·PνJ − traces) , (10)

where the scalar quantity A(J,a)(µ2) = ⟨P |O(J,a)(µ2)|P ⟩
is the reduced matrix element. Substituting Eq. (10) into
Eq. (9), we have

σn(ω, ξ
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=
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Ci
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J−2i
(
−P 2ξ2/4

)i
, (12)

where C is the binomial function and [J/2] is the great-
est integer less than or equal to J/2. Up to now, no
approximation has been made in deriving Eq. (11).
Since higher dimensional matrix element is relatively

smaller by powers of Λ2
QCDξ

2 when two reduced ma-
trix elements are compared, for the following discussion,
we ignore this power suppressed correction to keep only
terms with the lowest dimensional operators, which cor-
responds to keep the twist-2 operators in QCD [37]. Re-
duced matrix elements of these twist-2 operators can be
expressed as moments of PDFs,

A(J,a)(µ2) =
1

Sa

∫ 1

−1
dxxJ−1fa(x, µ

2) , (13)
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flavor-changing vector currents, respectively, and “. . . ”
indicates for other possible combinations of two currents
including the gluonic current, e.g., jµν ∝ FµρF ρ

ν . Ma-
trix elements constructed from operators in Eq. (3) sat-
isfy the relation

σ∗
n(ω, ξ

2, P 2) = σn(−ω, ξ
2, P 2). (4)

Instead of the correlation of two currents, the nonlo-
cal operator in Eq. (1) could also be made of the cor-
relation of gauge dependent field operators with proper
gauge link(s), e.g.,

Oq(ξ) =Zq(ξ
2)ψq(ξ) /ξΦ(ξ, 0)ψq(0) , (5)

where Φ(ξ, 0) = Pe−ig
∫

1

0
ξ·A(λξ) dλ is the path ordered

gauge link, Zq(ξ2) is the renormalization constant of this
operator, depending on ξ2 [27], and matrix element con-
structed from which satisfies the relation

σ∗
n(ω, ξ

2, P 2) = −σn(−ω, ξ
2, P 2). (6)

Besides scalar operators constructed above, we can also
construct vector or tensor operators, e.g.,

Oµν(ξ) = ξ4Z2
V [ψqγµψq](ξ) [ψqγνψq](0) . (7)

To simply the discussion, we will consider only scalar
operators in the following, although tensor operators can
be studied following the same way.
Factorization — We show that σn defined in Eq. (1)
could be factorized into PDFs with perturbatively calcu-
lable coefficients so long as ξ2 is sufficiently small,

σn(ω, ξ
2,P 2) =

∑

a

∫ 1

−1

dx

x
fa(x, µ

2)

×Ka
n(xω, ξ

2, x2P 2, µ2) +O(ξ2Λ2
QCD) ,

(8)

where µ is the factorization scale, Ka
n are perturba-

tively calculable hard coefficients, and fa is PDF of flavor
a = q, g with anti-quark PDFs expressed by quark PDFs
using the relation fā(x, µ2) = −fa(−x, µ2).
Let ξ2 be small but not vanishing, and applying oper-

ator product expansion (OPE) to the nonlocal operator
On(ξ) in Eq. (1) [37], we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) ξν1 · · · ξνJ

× ⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ , (9)

where µ is the renormalization scale. The O(J,a)
ν1···νJ (µ

2) is
a local, symmetric and traceless operator of spin J with
“a” labeling different operators of the same spin, and

⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ = 2A(J,a)(µ2)

× (Pν1 · · ·PνJ − traces) , (10)

where the scalar quantity A(J,a)(µ2) = ⟨P |O(J,a)(µ2)|P ⟩
is the reduced matrix element. Substituting Eq. (10) into
Eq. (9), we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) 2A(J,a)(µ2)

× ΣJ (ω, P
2ξ2) , (11)

where

ΣJ(ω, P
2ξ2) ≡ ξν1 · · · ξνJ (Pν1 · · ·PνJ − traces)

=

[J/2]∑

i=0

Ci
J−i(ω)

J−2i
(
−P 2ξ2/4

)i
, (12)

where C is the binomial function and [J/2] is the great-
est integer less than or equal to J/2. Up to now, no
approximation has been made in deriving Eq. (11).
Since higher dimensional matrix element is relatively

smaller by powers of Λ2
QCDξ

2 when two reduced ma-
trix elements are compared, for the following discussion,
we ignore this power suppressed correction to keep only
terms with the lowest dimensional operators, which cor-
responds to keep the twist-2 operators in QCD [37]. Re-
duced matrix elements of these twist-2 operators can be
expressed as moments of PDFs,

A(J,a)(µ2) =
1

Sa

∫ 1

−1
dxxJ−1fa(x, µ

2) , (13)

Local, symmetric , traceless op
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Figure 3.1.: NLO Feynman diagrams contributing to the Drell-Yan cross section.

referred to as virtual correction. The interference term of this diagram with the LO Drell-

Yan diagram is of the same order in αs as the squared matrix elements for the first two

diagrams. The contributions from both real and virtual diagrams to the cross section are

infrared divergent, but in the sum of all diagrams the infrared divergences cancel. This

statement is true to all orders in perturbation theory and is known as Bloch-Nordsieck

theorem [21] in QED and Kinoshita-Lee-Nauenberg theorem [22, 23] in QCD.

The second type of divergences occurs, when a parton is radiated collinear from another

on-shell massless parton. Let us consider a massless quark with momentum p, which emits

a gluon with momentum k. After the emission the propagator of the quark is given by

/p− /k

(p− k)2
=

/p− /k

−2p · k
= − /p− /k

2p0k0(1− cos θ)
, (3.1)

where θ is the angle between the momentum of the quark and the gluon. Again we

encounter an infrared divergence for vanishing gluon energy k0. The second singularity

of Eq. (3.1) arises for θ = 0 corresponding to the collinear radiation of the gluon. For

infrared divergences we have argued that, since it is impossible to detect an arbitrarily soft

gluon, we are not calculating a physically measurable quantity. For collinear divergences

this is also the case. There is a classical example that illustrates this fact. Consider

an electron that is boosted to a velocity v ≈ c. The electromagnetic field of this very

fast electron possesses exactly the same properties as a photon moving collinearly to the

electron. Thus, the field can be described as a bunch of photons accompanying the electron

(for details see Ref. [24]). What we observe is not the ’naked’ electron, but the electron

in its surrounding Coulomb cloud of photons. The same argument holds for quarks and

collinear gluons. The cloud of gluons and other partons, which accompanies a quark, is

absorbed into the definition of the parton distribution functions. Therefore the collinear

divergences are factorized from the hard partonic scattering cross section and linked to the

bare parton distribution functions. In the next chapter, we will discuss the factorization

procedure in detail.

The third kind of divergences which we encounter in higher-order perturbative QCD

calculations are ultraviolet divergences. They are present in most Feynman diagrams

which contain a closed loop. Since we do not observe the internal loop momentum, we
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Figure 5.1.: LO Feynman diagram contributing to the Drell-Yan process.

where Q2 denotes the squared invariant mass of the lepton pair. At LO we have to consider

only one Feynman diagram in the calculation of dσ̂, which is depicted in Fig. 5.1. By

means of the Feynman rules in Appendix A.1 it is trivial to write down the corresponding

matrix element,

M(0) = v̄(p2, s2)(−ieqeγµ)u(p1, s1)ϵ∗µ(q), (5.3)

with the momentum and spin of the incoming quark, p1 and s1, and the momentum

and spin of the incoming antiquark, p2 and s2. The quark’s fractional electromagnetic

charge is denoted by eq and the polarization vector of the outgoing virtual photon by ϵµ.

Squaring the matrix element and averaging over spins and colors of the incoming quark

and antiquark we obtain

1

9

1

4

∑

s1,s2

|M(0)|2 =
e2qe

2

12
Tr(− /p2γ

µ
/p1γµ) =

e2qe
2ŝ

3
, (5.4)

where ŝ = (p1 + p2)2 is the partonic center-of-mass energy. The partonic differential cross

section for the production of a virtual photon to LO is then given by

dσ̂(0)
γ (q + q̄ → γ∗) =

1

F

e2qe
2ŝ

3
dP (5.5)

with the invariant flux factor, F = 2ŝ, for massless quarks and the differential phase space,

dP =
d4q

(2π)3
(2π)4δ(4)(p1 + p2 − q), (5.6)

The delta function assures momentum conservation at the quark-photon vertex. Since we

are only interested in the mass of the virtual photon, we integrate over its momentum to

obtain

dσ̂(0)
γ

dQ2
(q + q̄ → γ∗) =

e2qe
2

6

∫

d4q

(2π)3
(2π)4δ(4)(p1 + p2 − q)δ(q2 −Q2)θ(q0)

=
e2qe

2π

3
δ(ŝ −Q2) =

4π2αe2q
3

δ(ŝ −Q2). (5.7)
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Figure 5.2.: Real gluon-emission diagrams for the Drell-Yan process at NLO.

ϵ is different for the regularization of infrared/collinear (ϵ < 0) and ultraviolet (ϵ > 0)

divergences. Subtraction of singularities is performed in the MS scheme. In this scheme

the NLO corrections to the Drell-Yan process were fist derived by Altarelli et al. [76] in

the late 70s.

In the following we will discriminate between real and virtual corrections to the cross

section. In this context, real refers to contributions from Feynman diagrams, which do not

contain undetermined loop momenta. I.e. each added gluon or fermion line has to have

one external end and is therefore on mass shell. By contrast virtual diagrams originate

from adding a gluon or fermion line attached to two internal vertices. The virtual particle’s

mass is then undefined and has to be integrated over.

At NLO we encounter two real diagrams, which originate from radiating an additional

gluon from the external quark and antiquark lines of the LO diagram. These diagrams

are depicted in Fig. 5.2. By means of the Feynman rules of QCD, it is straightforward

to evaluate the corresponding matrix element. Taking the modulus squared of the matrix

element and averaging over spin and color of the incoming particles we find

1

9

1

4

∑

s1,s2

|Mqq̄→γ∗G|2 =
2

3
e2g2e2qµ

2ϵ
RCF (1− ϵ)

{

(1− ϵ)

(

û

t̂
+

t̂

û

)

+
2Q2ŝ

ût̂
− 2ϵ

}

, (5.18)

where û, t̂ and ŝ are the partonic Mandelstam variables defined as

û = (p1 − k)2 = (p2 − q)2,

t̂ = (p1 − q)2 = (p2 − k)2,

ŝ = (p1 + p2)2 = (q + k)2, (5.19)

where k is the momentum of the gluon. The factors proportional to ϵ stem from the

modified gamma algebra in d dimensions.

The contribution of the real NLO diagrams to the partonic Drell-Yan cross section is

given by their modulus-squared matrix element multiplied by the flux factor, the factor
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Figure 5.3.: Virtual diagram contributing to the Drell-Yan cross section at NLO.

By means of these particular distributions the singular terms in Eq. (5.30) can be expanded

in powers of ϵ [77], for example

(1− z)−1−2ϵ = −
1

2ϵ
δ(1 − z) +

1

(1− z)+
− ϵ

(

ln(1− z)

1− z

)

+

+O(ϵ2). (5.32)

The singularities are then manifest as poles in 1/ϵ. After expansion, we finally obtain the

contribution of the real diagrams to the NLO hard-scattering function,

αs

π
ω(1)
qq̄ |real =CF

αs

2π

(

4πµ2
R

Q2

)ϵ
Γ(1− ϵ)

Γ(1− 2ϵ)

×
[

2

ϵ2
δ(1 − z)−

2

ϵ

1 + z2

(1− z)+
+ 4(1 + z2)

(

ln(1− z)

1− z

)

+

− 2
1 + z2

1− z
ln z

]

.

(5.33)

The term proportional to 1/ϵ2 is singular as z → 1. It is an infrared divergence due to

the emission of an arbitrarily soft gluon from the quark or antiquark. As discussed in Ch.

3 infrared singularities cancel in the sum of all diagrams to a given order in perturbation

theory. In our case this is the sum of real and virtual diagrams.

The only virtual diagram contributing at NLO is depicted in Fig. 5.3. Actually, there

are two more virtual diagrams at this order in perturbation theory, namely the one-loop

self-energy diagrams for the quark and antiquark lines. However, we see from Eq. (3.18)

that the contributions from the self-energy diagrams vanish, if the quark (antiquark) is

massless and ϵ < 0. We note that in Landau gauge, where ξ → 0 in the gauge-fixing term

in the Lagrangian (see Eq. (2.6)), self-energy diagrams do not contribute regardless of the

mass of the fermions. The virtual contribution to the O(αs) cross section is calculated

from the interference of the diagram in Fig. 5.3 with the LO diagram. Its derivation is

similar to the derivation of the contribution from the real diagrams. We therefore do not

show the entire calculation and simply state the result,

αs

π
ω(1)
qq̄ |virtual = CF

αs

2π

(

4πµ2
R

Q2

)ϵ
Γ(1− ϵ)

Γ(1− 2ϵ)

[

−
2

ϵ2
−

3

ϵ
− 8 +

2

3
π2

]

δ(1 − z). (5.34)




