Calculation of Pion Valence Distribution from Hadronic Lattice Cross Sections

Raza Sabbir Sufian

in Collaboration with
J. Karpie, C. Egerer, D. Richards, J.W. Qiu, B. Chakraborty, R. Edwards, K. Orginos

Joe Karpie

Supervisor: K. Orginos

Major contribution in writing C++ code for pion and kaon

Involved in Pseudo-PDF calculation with A. Radyushkin and K. Orginos

Colin Egerer

Supervisor: D. Richards
Major contribution in writing C++ code for data handling

Involved in g_{A} calculation with D. Richards

Why Pion Valence Distribution

\star Pion : lightest bound state and associated with dynamical chiral symmetry breaking
\star Pion valence distribution large-x behavior an unresolved problem
\star From pQCD and different models : $(1-x)^{2}$ or $(1-x)^{1}$?

* C12-15-006 experiment at JLab to explore large-x behavior (C. Weiss from Theory Center)

Why Pion Valence Distribution

plot from Tianbo Liu

* Large- X region: small configuration constrained by confinement dynamics

Lattice QCD can help understanding large- x behavior and test different models

Calculations of Parton Distributions on the Lattice

* Quasi PDFs (X. Ji, PRL 2013)

$$
\begin{aligned}
& \tilde{q}\left(x, \mu^{2}, P_{z}\right) \equiv \int \frac{d \xi_{z}}{4 \pi} e^{-i x P_{z} \xi_{z}}\langle P| \bar{\psi}\left(\xi_{z}\right) \gamma_{z} \exp \left\{-i g \int_{0}^{\xi_{z}} d \eta_{z} A_{z}\left(\eta_{z}\right)\right\} \psi(0)|P\rangle \\
& \quad \text { Proposed } \tilde{q}\left(x, \Lambda, P_{z}\right)=\int_{-1}^{1} \frac{d y}{|y|} Z\left(\frac{x}{y}, \frac{\mu}{P_{z}}, \frac{\Lambda}{P_{z}}\right)_{\mu^{2}=Q^{2}} q\left(y, Q^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{P_{z}^{2}}, \frac{M^{2}}{P_{z}^{2}}\right)
\end{aligned}
$$

Power-law UV divergence from Wilson line in the non-local operator

* Pseudo-PDFs (A. Radyushkin, PLB 2017)
$M\left(\xi, P_{Z}\right) \rightarrow \mathcal{M}\left(\omega, \xi^{2}\right) \quad$ Lorentz invariant Ioffe time $\omega=\xi \cdot P$

$$
\mathcal{P}\left(x, \xi^{2}\right) \equiv \int \frac{d \omega}{2 \pi} e^{-i x \omega} \mathcal{M}\left(\omega, \xi^{2}\right)
$$

Lattice Implementation : l. Orginos et. al (PRD 2017) 2. Gluon quasi-PDF ($\mathrm{LP}^{3}, 2018$)

Calculations of Parton Distributions on the Lattice

* Hadronic tensor (K. F. Liu, PRL 1994, PRD 200)
* Position-space correlators (V. M. Braun \& D. Müller, EPJ 2008)
* Inversion Method (A. Chambers, et al PRL 2017)
* Quasi PDFs (X. Ji, PRL 2013)
* Pseudo-PDFs (A. Radyushkin, PLB 2017)

Extensive efforts and significant achievements in recent years

Hadronic Lattice Cross Sections (LCSs) (Y. Q. Ma, J.-W. Qiu, PRL 2018)

What are Good Lattice "Cross Sections" (LCSs)

Single hadron matrix elements:
Ma \& Qiu
PRL (2018)

1. Calculable using lattice QCD with Euclidean time
2. Well defined continuum limit ($a \rightarrow 0$), UV finite
i.e. no power law divergence from Wilson line in non-local operator
3. Share the same perturbative collinear divergences with PDFs
4. Factorizable to PDFs with IR-safe hard coefficients with controllable power corrections

A good theory can identify its limitations

\star Equal time current insertion : sum over all energy modes can saturate phase space

Use heavy-light flavor changing current to suppress noise from spectator propagator in a systematic way

Good Lattice Cross Sections (LCSs)

- Hadron matrix elements: $\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle$

$$
\omega \equiv P \cdot \xi
$$

Current-current correlators

$$
\mathcal{O}_{j_{1} j_{2}}(\xi) \equiv \xi^{d_{j_{1}}+d_{j_{2}}-2} Z_{j_{1}}^{-1} Z_{j_{2}}^{-1} j_{1}(\xi) j_{2}(0)
$$

d_{j} : Dimension of the current
Z_{j} : Renormalization constant of the current

- Different choices of currents

$$
\begin{aligned}
j_{S}(\xi)= & \xi^{2} Z_{S}^{-1}\left[\bar{\psi}_{q} \psi_{q}\right](\xi), \\
j_{V^{\prime}}(\xi)= & \xi Z_{V^{\prime}}^{-1}\left[\psi_{(G)}\right)^{\prime} \cdot \xi \psi(\bar{q}) \\
& \quad \text { flavor changing current }(\xi),
\end{aligned}
$$

$$
\begin{aligned}
& j_{V}(\xi)=\xi Z_{V}^{-1}\left[\bar{\psi}_{q} \cdot \xi \psi_{q}\right](\xi), \\
& j_{G}(\xi)=\xi^{3} Z_{G}^{-1}\left[-\frac{1}{4} F_{\mu \nu}^{c} F_{\mu \nu}^{c}\right](\xi), \ldots
\end{aligned}
$$

gluon distribution

$$
\sigma^{D I S}\left(x, Q^{2}, \sqrt{s}\right)=\sum_{\alpha=q, \bar{q}, g} C_{\alpha}\left(x, \frac{Q^{2}}{\mu^{2}}, \sqrt{s}\right) \otimes f_{\alpha}\left(x, \mu^{2}\right)+\text { Power Corrections }
$$

Factorization scale μ describes which fluctuations should be included in the PDFs and which can be included in the hard scattering part

LCSs: Lattice Calculable + Renormalizable + Factorizable

$$
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) \times K_{n}^{a}\left(x \omega, \xi^{2}, x^{2} P^{2}, \mu^{2}\right)+\mathcal{O}\left(\xi^{2} \Lambda_{Q C D}^{2}\right)
$$

Nonperturbative PDFs of flavor $a=q, g$

$$
f_{\bar{a}}\left(x, \mu^{2}\right)=-f_{a}\left(-x, \mu^{2}\right)
$$

P and $\xi \rightarrow P \rightarrow \sqrt{s}$ Collision energy

 CollisionKinematics
$\xi \rightarrow \frac{1}{Q}$
Hard Probe hard hoefficients
\mathcal{O}_{n}

Dynamical
Features of LCSs
LCSs: Factorization holds for any finite ω and $P^{2} \xi^{2}$ if ξ is short distance

Lattice Calculation

$$
\begin{array}{rl}
32^{3} \times 96, m_{\pi} & \approx 430 \\
a & \mathrm{MeV} \\
a .127 & \mathrm{fm}
\end{array}
$$

Production Recently Finished

Projected calculations with

$$
\begin{array}{ll}
24^{3} \times 64, & m_{\pi} \approx 430 \mathrm{MeV} \\
& a \approx 0.127 \mathrm{fm}
\end{array}
$$

Finite volume effect Briceño, et al PRD 2018

$$
\begin{aligned}
32^{3} \times 64, & m_{\pi} \approx 280 \mathrm{MeV} \\
& a \approx 0.09 \mathrm{fm} \\
64^{3} \times 128, & m_{\pi} \approx 170 \mathrm{MeV} \\
& a \approx 0.09 \mathrm{fm}
\end{aligned}
$$

Lattice spacing and pion mass effects

Lattice Calculation Setup

* Analysis shown here on isoClover with 490 Configurations
\star Lattice spacing $\sim 0.127 \mathrm{fm}, m_{\pi} \approx 430 \mathrm{MeV}\left(32^{3} \times 96\right)$

Example Lattice Matrix Elements

* About 10 different current-current correlations are being analyzed (R. Edwards for data handling)

V-A matrix element
Idea by D. Richards for reliable extraction of matrix elements

* Momentum smearing used higher momentum

Plots from Colin Egerer (50 configs)

Preliminary Lattice Results

* Only about $1 / 3$ statistics of $p=3,4,5$ data analyzed and similar statistics from $\gamma_{y}-\gamma_{y}$ to be added

* $\mathrm{p}=1(0.3 \mathrm{GeV})$ data deviates

Does the calculated correlation matrix lead to consistent description of pion PDF ?

$$
f(x) \approx A x^{\alpha}(1-x)^{\beta}(1+\gamma \sqrt{x}+\delta x)
$$

Preliminary Lattice Results

$$
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) \times K_{n}^{a}\left(x \omega, \xi^{2}, x^{2} P^{2}, \mu^{2}\right)+\mathcal{O}\left(\xi^{2} \Lambda_{Q C D}^{2}\right)
$$

calculate

 on lattice
extract PDF

PQCD

t A combined fit to many LCSs on an ensemble will lead to precise determination of PDFs
e.g. like global fits to data from different experiments !

With these encouraging results, we are very excited!!!

Collaboration between lattice QCD and perturbative QCD

LCSs can be a tool to test different model calculations
K_{n}^{a} at LO and NLO for different currents to be calculated

Extensions such as kaon, nucleon PDFs on their way....

Weak Neutral Current Axial Form Factors

 \&e
(Anti)Neutrino Scattering

Raza Sabbir Sufian

in Collaboration with
David G. Richards \& Keh-Fei Liu

Goals:

1. Determine WNC axial form factor \&e
2. Neutrino-nucleon scattering differential cross sections

Neutrino-Nucleon Neutral Current Elastic Scattering

$$
\begin{array}{lll}
\nu+p & \rightarrow & \nu+p \\
\bar{\nu}+p & \rightarrow & \bar{\nu}+p \\
\hline
\end{array}
$$

Matrix element in V-A structure of leptonic current

Eliminated from NCE scattering analysis by assuming different values of $\Delta s, M_{A}^{\text {dipole }}$ and dipole form of form factors

Weak Axial FF form parity-violating e-p scattering

$$
\begin{aligned}
A_{P V}^{p}= & -\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha} \frac{1}{\left[\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}\right]} \\
\times & \left\{\left(\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}\right)\left(1-4 \sin ^{2} \theta_{W}\right)\left(1+R_{V}^{p}\right)\right. \\
& -\left(\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}\right)\left(1+R_{V}^{n}\right) \\
& -\left(\epsilon G_{E}^{p} G_{E}^{s}+\tau G_{M}^{p} G_{M}^{s}\right)\left(1+R_{V}^{(0)}\right) \\
& \left.-\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) G_{M}^{p} G_{A}^{e}\right\},
\end{aligned}
$$

with

$$
\begin{aligned}
\tau & =\frac{Q^{2}}{4 M_{p}^{2}}, \quad \epsilon=\left(1+2(1+\tau) \tan ^{2} \frac{\theta}{2}\right)^{-1}, \\
\epsilon^{\prime} & =\sqrt{\tau(1+\tau)\left(1-\epsilon^{2}\right)}
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{M}_{\gamma}=-\frac{4 \pi \alpha}{Q^{2}} e_{i} l^{\mu} J_{\mu}^{\gamma} \\
\mathcal{M}_{Z}=\frac{G_{F}}{2 \sqrt{2}}\left(g_{V}^{i} l^{\mu}+g_{A}^{i} l^{\mu 5}\right)\left(J_{\mu}^{Z}++J_{\mu 5}^{Z}\right)
\end{gathered}
$$

Qweak Collaboration, Nature 2018

$$
G_{A}^{e f f}=-0.59(34)
$$

Many quark radiative corrections (unknown)

Goal of this work is to obtain the most precise determination of G_{A}^{Z}

(Anti)Neutrino-Nucleon Scattering Differential

 Cross Section$$
\frac{d \sigma}{d Q^{2}}=\frac{G_{F}^{2}}{2 \pi} \frac{Q^{2}}{E_{\nu}^{2}}\left(A \pm B W+C W^{2}\right)
$$

Garvey, PRC 1993

$$
W=4\left(E_{\nu} / M_{p}-\tau\right)
$$

$$
A=\frac{1}{4}\left\{\left(G_{A}^{Z}\right)^{2}(1+\tau)-\left[\left(F_{1}^{Z}\right)^{2}-\tau\left(F_{2}^{Z}\right)^{2}\right](1-\tau)+4 \tau F_{1}^{Z} F_{2}^{Z}\right\}
$$

$B=-\frac{1}{4} G_{A}^{Z}\left(F_{1}^{Z}+F_{2}^{Z}\right)$
$C=\frac{1}{64 \tau}\left[\left(G_{A}^{Z}\right)^{2}+\left(F_{1}^{Z}\right)^{2}+\tau\left(F_{2}^{Z}\right)^{2}\right]$

Weak axial FF FFs

Calculation of $\mathrm{F}_{1}^{\mathrm{Z}}$ and $\mathrm{F}_{2}{ }^{\mathrm{Z}}$

$$
F_{1,2}^{Z, p}=\left(\frac{1}{2}-\sin ^{2} \theta_{W}\right)\left(F_{1,2}^{p}\left(Q^{2}\right)-F_{1,2}^{n}\left(Q^{2}\right)\right)-\sin ^{2} \theta_{W}\left(F_{1,2}^{p}+F_{1,2}^{n}\right)-\frac{F_{1,2}^{s}}{2}
$$

Nucleon EMFF from
Model Independent z-expansion

Ye, Arrington, Hill, Lee PLB 2018

Two photon exchange correction included

Strange EMFF from Lattice QCD

RSS, et al. PRL (2017) RSS, PRD 2018

Physical point
4 lattice spacings 3 volumes

Calculation of Neutral Weak EMFFs

$G_{E, M}^{Z, p(n)}\left(Q^{2}\right)=\frac{1}{4}\left[\left(1-4 \sin ^{2} \theta_{W}\right)\left(1+R_{V}^{p(n)}\right) G_{E, M}^{\gamma, p(n)}\left(Q^{2}\right)\right.$
$\left.-\left(1+R_{V}^{n(p)}\right) G_{E, M}^{\gamma, n(p)}\left(Q^{2}\right)-G_{E, M}^{s}\left(Q^{2}\right)\right]$

Radiative corrections

 for e-p scattering

Determination of Neutral Current Weak Axial FF

*Use MiniBooNE data ($0.27<\mathrm{Q}^{2}<0.70 \mathrm{GeV}^{2}$)

Reason 1: Uncertainty in $\mathrm{G}_{\mathrm{E}, \mathrm{M}}^{\mathrm{M}}$ becomes very large and values consistent with zero

Reason 2: Nuclear effect can be large at low Q^{2}

MiniBooNE used mineral oil CH_{2} based Cherenkov detector

Determination of Neutral Current Weak Axial FF

$$
G_{A}^{Z, z-\exp }\left(Q^{2}\right)=\sum_{k=0}^{k_{\mathrm{max}}} a_{k} z^{k}, \quad z=\frac{\sqrt{t_{\mathrm{cut}}+Q^{2}}-\sqrt{t_{\mathrm{cut}}}}{\sqrt{t_{\mathrm{cut}}+Q^{2}}+\sqrt{t_{\mathrm{cut}}}}
$$

z-exp fit	Fit parameters	$G_{A}^{Z}(0)$
2-terms	$a_{1}=1.378(92)$	$-0.754(26)$
3-terms	$a_{1}=1.260(359), a_{2}=0.200(623)$	$-0.738(54)$
4-terms	$a_{1}=1.248(367), a_{2}=0.127(973)$, $a_{3}=0.201(1.939)$	$-0.734(63)$
Dipole fit	$M_{A}^{\text {dip }}=0.936(53) \mathrm{GeV}$	$-0.752(56)$

Impact of Lattice QCD Strange EMFF

Possibility: Since strange quark contribution is small set $G_{E, M}^{s}=0$ (??)

Thanks to
Rocco Schiavilla

$$
\frac{d \sigma}{d Q^{2}}=\frac{G_{F}^{2}}{2 \pi} \frac{Q^{2}}{E_{\nu}^{2}}\left(A \pm B W+C W^{2}\right)
$$

$$
W=4\left(E_{\nu} / M_{p}-\tau\right)
$$

$$
A=\frac{1}{4}\left\{\left(G_{A}^{Z}\right)^{2}(1+\tau)-\left[\left(F_{1}^{Z}\right)^{2}-\tau\left(F_{2}^{Z}\right)^{2}\right](1-\tau)+4 \tau F_{1}^{Z} F_{2}^{Z}\right\}
$$

$$
B=-\frac{1}{4} G_{A}^{Z}\left(F_{1}^{Z}+F_{2}^{Z}\right),
$$

$$
C=\frac{1}{64 \tau}\left[\left(G_{A}^{Z}\right)^{2}+\left(F_{1}^{Z}\right)^{2}+\tau\left(F_{2}^{Z}\right)^{2}\right]
$$

Reconstruction of Differential Cross Sections

> Nuclear effects
> Pauli blocking included in simulation
> Observed to have effect for $\mathrm{Q}^{2}<0.15 \mathrm{GeV}^{2}$

BNL E734 data
was NOT used in the analysis

Estimate of $\mathrm{G}_{\mathrm{A}}^{\mathrm{A}}(0)$

This Calculation

$$
G_{A}^{Z}=\frac{1}{2}\left(-G_{A}^{\mathrm{CC}}+G_{A}^{s}\right)
$$

$$
G_{A}^{C C}(0)=1.2723(23)
$$

$$
G_{A}^{s}(0)=-0.196(127)(041)
$$

MiniBooNE, PRD $82(2010) \quad G_{A}^{s}(0)=0.08(26)$
BNL E734, PRC 48 (1993)

$$
G_{A}^{s}(0)=0,-0.15(7),-0.13(09),-0.21(10)
$$

(For various inputs of $G_{E, M}^{s}$)

From Jeremy Green's Talk

Summary

Precise estimate of NC weak axial form factor $G^{Z}{ }_{A}$

Strange quark contribution cannot be ignored

Reconstruction of (anti)neutrino- nucleon diff. cross sections with correct prediction of G_{A} and lattice input of $G^{s}{ }_{E, M}$

This calculation can be used to disentangle nuclear effects in neutrino-nucleus scattering experiments

$\#$	CC / NC	Reaction

Cabibbo-allowed quasi-elastic scattering from nucleons

1	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p}$ $\left(\bar{\nu}_{\mu} \mathrm{p} \rightarrow \mu^{+} \mathrm{n}\right)$
Quasi-)elastic scattering from nucleons		
2	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{n}$ $\left(\bar{\nu}_{\mu} \mathrm{n} \rightarrow \bar{\nu}_{\mu} \mathrm{n}\right)$ $\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{p}$ $\left(\bar{\nu}_{\mu} \mathrm{p} \rightarrow \bar{\nu}_{\mu} \mathrm{p}\right)$

Resonant single pion production

3	CC	$\nu_{\mu} \mathrm{p} \rightarrow \mu^{-} \mathrm{p} \pi^{+}$
4	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p} \pi^{0}$
5	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{n} \pi^{+}$
6	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{p} \pi^{0}$
7	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{n} \pi^{+}$
8	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{n} \pi^{0}$
9	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{p} \pi^{-}$
$10-16$	Corresponding $\bar{\nu}_{\mu}$ processes	
Multi-pion resonant processes		
17	CC	$\nu_{\mu} \mathrm{p} \rightarrow \mu^{-} \Delta^{+} \pi^{+}$
18	CC	$\nu_{\mu} \mathrm{p} \rightarrow \mu^{-} \Delta^{++} \pi^{0}$
19	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \Delta^{+} \pi^{0}$
20	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \Delta^{0} \pi^{+}$
21	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \Delta^{++} \pi^{-}$
22	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \Delta^{+} \pi^{0}$
23	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \Delta^{0} \pi^{+}$
24	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \Delta^{++} \pi^{-}$

\#	$\begin{aligned} & \mathrm{CC} / \\ & \mathrm{NC} \end{aligned}$	Reaction
25	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \Delta^{+} \pi^{-}$
26	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \Delta^{0} \pi^{0}$
27	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \Delta^{-} \pi^{+}$
28-38		Corresponding $\bar{\nu}_{\mu}$ processes
39	CC	$\nu_{\mu} \mathrm{p} \rightarrow \mu^{-} \mathrm{p} \rho^{+}(770)$
40	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p} \rho^{0}(770)$
41	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{n} \rho^{+}(770)$
42	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{p} \rho^{0}(770)$
43	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{n} \rho^{+}(770)$
44	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{n} \rho^{0}(770)$
45	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{p} \rho^{-}(770)$
46-52		Corresponding $\bar{\nu}_{\mu}$ processes
53	CC	$\nu_{\mu} \mathrm{p} \rightarrow \mu^{-} \Sigma^{+} \mathrm{K}^{+}$
54	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \Sigma^{0} \mathrm{~K}^{+}$
55	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \Sigma^{+} \mathrm{K}^{0}$
56	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \Sigma^{0} \mathrm{~K}^{+}$
57	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \Sigma^{+} \mathrm{K}^{0}$
58	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \Sigma^{0} \mathrm{~K}^{0}$
59	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \Sigma^{-} \mathrm{K}^{+}$
60-66		Corresponding $\bar{\nu}_{\mu}$ processes
67	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p} \eta$
68	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{p} \eta$
69	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{n} \eta$
70-72		Corresponding $\bar{\nu}_{\mu}$ processes
73	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{K}^{+} \Lambda$
74	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{K}^{+} \Lambda$
75	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{K}^{0} \Lambda$

Table 4.5: Processes available with NUANCE. The numbers in the leftmost column indicate the assigned reaction code in NUANCE.

\#	$\begin{aligned} & \hline \mathrm{CC} / \\ & \mathrm{NC} \end{aligned}$	Reaction
76-78		Corresponding $\bar{\nu}_{\mu}$ processes
79	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p} \pi^{+} \pi^{-}$
80	CC	$\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p} \pi^{0} \pi^{0}$
81	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{p} \pi^{+} \pi^{-}$
82	NC	$\nu_{\mu} \mathrm{p} \rightarrow \nu_{\mu} \mathrm{p} \pi^{0} \pi^{0}$
83	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{n} \pi^{+} \pi^{-}$
84	NC	$\nu_{\mu} \mathrm{n} \rightarrow \nu_{\mu} \mathrm{n} \pi^{0} \pi^{0}$
85-90		Corresponding $\bar{\nu}_{\mu}$ processes
Deep Inelastic Scattering		
91	CC	$\nu_{\mu} \mathrm{N} \rightarrow \mu \mathrm{X}$
92	NC	$\nu_{\mu} \mathrm{N} \rightarrow \nu_{\mu} \mathrm{X}$
93-94		Unused
95	CC	Cabibbo-supp. QE hyperon production: $\begin{aligned} & \bar{\nu}_{\mu} \mathrm{p} \rightarrow \mu^{+} \Lambda \\ & \bar{\nu}_{\mu} \mathrm{n} \rightarrow \mu^{+} \Sigma^{-} \\ & \bar{\nu}_{\mu} \mathrm{p} \rightarrow \mu^{+} \Sigma^{0} \\ & \hline \end{aligned}$

\#	$\begin{aligned} & \hline \mathrm{CC} / \\ & \mathrm{NC} \end{aligned}$	Reaction
Coherent / diffractive π production		
96 97	NC CC	$\begin{aligned} & \nu_{\mu} \mathrm{A} \rightarrow \nu_{\mu} \mathrm{A} \pi^{0} \\ & \left(\bar{\nu}_{\mu} \mathrm{A} \rightarrow \bar{\nu}_{\mu} \mathrm{A} \pi^{0}\right) \\ & \nu_{\mu} \mathrm{A} \rightarrow \mu^{-} \mathrm{A} \pi^{+} \\ & \left(\bar{\nu}_{\mu} \mathrm{A} \rightarrow \mu^{+} \mathrm{A} \pi^{-}\right) \end{aligned}$
ν - e elastic scattering		
98	-	$\begin{aligned} & \nu_{\mu} \mathrm{e} \rightarrow \nu_{\mu} \mathrm{e} \\ & \left(\bar{\nu}_{\mu} \mathrm{e} \rightarrow \bar{\nu}_{\mu} \mathrm{e}\right) \end{aligned}$
ν-e inverse μ decay		
99	CC	$\nu_{\mu} \mathrm{e} \rightarrow \mu^{-} \nu_{\mathrm{e}}$

Table 4.5: Processes available with NUANCE. The numbers in the leftmost column indicate the assigned reaction code in NUANCE.(Continued from the previous page)

Pate, et al

EPJ Web Conf. 66 (2014) 06018

S.F. Pate, Phys. Rev. Lett. 92, 082002 (2004)

TABLE II. Two solutions for the strange form factors at $Q^{2}=$ $0.5 \mathrm{GeV}^{2}$ produced from the E734 and HAPPEX data.

	Solution 1	Solution 2
G_{E}^{s}	0.02 ± 0.09	0.37 ± 0.04
G_{M}^{s}	0.00 ± 0.21	-0.87 ± 0.11
G_{A}^{s}	-0.09 ± 0.05	0.28 ± 0.10

$$
\mathrm{Q}^{2}=0.5 \mathrm{GeV}^{2}
$$

Weak Axial FF form e-p scattering

F Sancher NITINT 07 Mav $31^{\text {tt }} 3007$

Particle	Lifetime (ns)	Decay mode	Branching ratio (\%)
π^{+}	26.03	$\mu^{+}+\nu_{\mu}$	99.9877
		$e^{+}+\nu_{e}$	0.0123
K^{+}	12.385	$\mu^{+}+\nu_{\mu}$	63.44
		$\pi^{0}+e^{+}+\nu_{e}$	4.98
		$\pi^{0}+\mu^{+}+\nu_{\mu}$	3.32
K_{L}^{0}	51.6	$\pi^{-}+e^{+}+\nu_{e}$	20.333
		$\pi^{+}+e^{-}+\bar{\nu}_{e}$	20.197
		$\pi^{-}+\mu^{+}+\nu_{\mu}$	13.551
μ^{+}	2197.03	$e^{+}+\mu^{+}+\bar{\nu}_{\mu}+\bar{\nu}_{\mu}$	13.469

Nucleon Electromagnetic FF (Connected Insertion Calculation)

PHYSICAL REVIEW D 96, 114504 (2017)
Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

Raza Sabbir Sufian, ${ }^{1}$ Yi-Bo Yang, ${ }^{1,2}$ Jian Liang, ${ }^{1}$ Terrence Draper, ${ }^{1}$ and Keh-Fei Liu ${ }^{1}$

* Inclusion of DI will push nucleon total (CI +DI) electric EFFs in the right direction But a little bit noisier

DI contribution

DI contribution to magnetic FF

 not very significant
Magnetic Moment Extrapolation

$F_{1}^{p}\left(Q^{2}\right)=F_{i=3}\left(Q^{2}\right)$,
$F_{2}^{p}\left(Q^{2}\right)=\chi_{p}\left[\left(1-\gamma_{p}\right) F_{i=4}\left(Q^{2}\right)+\gamma_{p} F_{i=6}\left(Q^{2}\right)\right]$
$F_{\tau}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{M_{\rho_{n=0}}^{2}}\right)\left(1+\frac{Q^{2}}{M_{\rho_{n=1}}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{M_{\rho_{n=-}-2}^{2}}\right)}$

Sufian, de Teramond, Brodsky, Deur, Dosch PHYSICAL REVIEW D 95, 014011 (2017)

Analysis on 32I Ensemble

*Only 100 configs used for source-sink separation $t=14$

*No Fit, just average value at $\mathrm{t}=8$

32I
Proton Sachs Electric FF, 2 I I

Some of many calculations

de Téramond, Liu, RSS, Dosch, Brodsky, Deur
PRL (2018)

Barry, et. al. JAM Collaboration to appear in PRL

Factorization Theorem

$$
F_{1}\left(x, \frac{Q^{2}}{\Lambda_{Q C D}^{2}}\right)=\sum_{j} \int_{x}^{1} \frac{d y}{y} C_{j}\left(\frac{x}{y}, \frac{Q^{2}}{\mu^{2}}\right) f_{j}\left(y, \frac{\mu}{\Lambda_{Q C D}}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{Q^{2}}\right)
$$

$x=m o m e n t u m$ fraction of struck-quark
$\mathrm{y}=$ momentum fraction of parton j in proton

$$
f_{q_{i}}\left(y, \frac{\mu}{\Lambda}\right)=\int \frac{\xi}{2 \pi} e^{-2 i(y \bar{n} \cdot P) \xi}<P\left|\bar{\psi}_{i}(\bar{n} \xi) W(\bar{n} \xi,-\bar{n} \xi) \bar{\kappa} \psi_{i}(-\bar{n} \xi)\right| P>
$$

$\bar{n}^{2}=0 \quad$ light cone matrix matrix element

$$
W=P \exp \int_{-\xi}^{\xi} d s \bar{n} \cdot A(\bar{n} s)
$$

PDFs from DIS

- Hadronic tensor

$$
\begin{aligned}
W_{\mu \nu}(p, q) & =\frac{1}{4 \pi} \sum_{X}\langle p| j_{\mu}^{\dagger}(0)|X\rangle\langle X| j_{\nu}(0)|p\rangle(2 \pi)^{4} \delta\left(p_{X}-p-q\right) \\
& =\frac{1}{4 \pi} \int d^{4} y e^{i q \cdot y}\langle p|\left[j_{\mu}^{\dagger}(y), j_{\nu}(0)\right]|p\rangle
\end{aligned}
$$

- Leptonic tensor

$$
l^{\mu \nu}\left(k, k^{\prime}\right)=\left[\bar{u}\left(k^{\prime}, \sigma^{\prime}\right) \gamma^{\mu} u(k, \sigma)\right]^{*} \bar{u}\left(k^{\prime}, \sigma^{\prime}\right) \gamma^{\nu} u(k, \sigma)
$$

Pseudo-PDFs [A. Radyushkin (2017)]

- Lorentz decomposition of matrix element

$$
\begin{aligned}
\mathcal{M}^{\alpha}(z, p) & =\langle p| \bar{\psi}(z) \gamma^{\alpha} W_{z}(z, 0) \psi(0)|p\rangle \\
& =2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right) .
\end{aligned}
$$

- Light-cone

$$
\begin{aligned}
& p=\left(p_{+}, 0,0_{\perp}\right), \quad z=\left(0, z_{-}, 0_{\perp}\right) \\
& \mathcal{M}^{+}(z, p)=2 p^{+} \mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right) \\
& \mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)=\int_{-1}^{1} d x e^{-i x p_{+} z_{-}-} \underbrace{f(x)}_{\text {light-cone PDF }}
\end{aligned}
$$

- Ioffe time PDF

$\mathcal{M}_{p}\left(-z p,-z^{2}\right) \quad$ Lorentz invariant. Computable in any frame.

$$
\nu=-p z \quad \text { loffe time } \quad[\mathrm{B} . \mathrm{L} . \text { loffe (1969)] }
$$

$$
\mathcal{M}_{p}\left(\nu,-z^{2}\right)=\int_{-1}^{1} d x e^{i x \nu} \mathcal{P}\left(x,-z^{2}\right)
$$

loffe time PDF pseudo-PDF
Pseudo-PDF has $-1 \leq x \leq 1$ support. [A. Radyushkin (2017)]
$z^{2} \rightarrow 0$ limit

$$
\begin{aligned}
\mathcal{M}_{p}(\nu, 0)= & \int_{-1}^{1} d x e^{i x \nu} f(x) \quad\left(\mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)=\int_{-1}^{1} d x e^{-i x p_{+} z_{-}} f(x)\right) \\
& \mathcal{P}\left(x,-z^{2}\right) \xrightarrow[z^{2} \rightarrow 0]{\longrightarrow} f(x)
\end{aligned}
$$

- Quasi-PDF case

$$
\begin{gathered}
p=\left(E, 0_{\perp}, p_{3}\right), \quad z=\left(0,0_{\perp}, z_{3}\right) \\
\mathcal{M}^{3}(z, p)=2 p^{3} \mathcal{M}_{p}\left(-z_{3} p_{3},-z_{3}^{2}\right)+z^{3} \mathcal{M}_{z}\left(-z_{3} p_{3},-z_{3}^{2}\right) . \\
\widetilde{q}\left(\tilde{x}, p_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d z e^{-i \tilde{x}_{3} z} \mathcal{M}^{3}(z, p) \\
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i \tilde{x}_{\nu}}\left[\mathcal{M}_{p}\left(\nu, \nu^{2} / p_{3}^{2}\right)-\frac{\nu}{2 p_{3}^{2}} \mathcal{M}_{z}\left(\nu, \nu^{2} / p_{3}^{2}\right)\right] . \\
\widetilde{q}\left(x, p_{3}\right) \xrightarrow[p_{3} \rightarrow \infty]{\longrightarrow} f(x)
\end{gathered}
$$

- Better choice

$$
\mathcal{M}^{0}(z, p)=2 p^{0} \mathcal{M}_{p}\left(-z_{3} p_{3},-z_{3}^{2}\right)
$$

$$
\widetilde{q}^{\prime}\left(\tilde{x}, p_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d z e^{-i \tilde{x} p_{3} z} \mathcal{M}^{0}(z, p)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i \tilde{x} \nu} \mathcal{M}_{p}\left(\nu, \nu^{2} / p_{3}^{2}\right) .
$$

- Ratio

$$
\begin{aligned}
\mathfrak{M}\left(v, z_{3}^{2}\right)=\frac{\mathcal{M}_{p}\left(v, z_{3}^{2}\right)}{\mathcal{M}_{p}\left(0, z_{3}^{2}\right)} \\
\quad \mathcal{M}_{p}\left(0, z_{3}^{2}\right) \underset{z_{3}^{2} \rightarrow 0}{\longrightarrow} 1 \quad \text { regular in the limit }
\end{aligned}
$$

By taking the ratio:

- smaller scaling violation in $z_{3} \rightarrow 0$
- power divergence is canceled and well defined in taking continuum limit

- Scale evolution (DGLAP)

$$
\frac{d}{d \ln z_{3}^{2}} \mathcal{M}\left(v, z_{3}^{2}\right)=-\frac{\alpha_{s}}{2 \pi} C_{F} \int_{0}^{1} d u B(u) \mathcal{M}\left(u v, z_{3}^{2}\right), \quad B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+}
$$

Pseudo v.s. Quasi

- By taking the ratio, pseudo-PDF is better for renormalization.
- Small-x region requires large $v=-p z$; eventually large momentum data is required (?)

$$
\mathcal{M}_{p}\left(\nu,-z^{2}\right)=\int_{-1}^{1} d x e^{i x \nu} \mathcal{P}\left(x,-z^{2}\right)
$$

DIS cross section is infrared divergent, and nonperturbative!

\square QCD factorization (approximation!)

Color entanglement Approximation

Quasi-Distribution of Pion

$$
m_{\pi} \simeq 300 \mathrm{MeV}
$$

LP3, arXiv:1804.01483

$$
\begin{align*}
& \tilde{f}_{\alpha}(x, \rho)=\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\begin{array}{lc}
\frac{x-\rho}{(1-x)(1-\rho)}+\frac{2 x(2-x)-\rho(1+x)}{2(1-x)(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x>1 \\
\frac{-3 x+2 x^{2}+\rho}{(1-x)(1-\rho)}+\frac{2 x(2-x)-\rho(1+x)}{2(1-x)(1-\rho)^{3 / 2}} \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} & 0<x<1 \\
-\frac{x-\rho}{(1-x)(1-\rho)}-\frac{2 x(2-x)-\rho(1+x)}{2(1-x)(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x<0
\end{array}\right. \\
& +\frac{\alpha_{s} C_{F}}{2 \pi}(1-\tau)\left\{\begin{array}{lc}
\frac{\rho\left(-3 x+2 x^{2}+\rho\right)}{2(1-x)(1-\rho)\left(4 x-4 x^{2}-\rho\right)}+\frac{-\rho}{4(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x>1 \\
\frac{-x+\rho}{2(1-x)(1-\rho)}+\frac{-\rho}{4(1-\rho)^{3 / 2}} \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} & 0<x<1, \\
-\frac{\rho\left(-3 x+2 x^{2}+\rho\right)}{2(1-x)(1-\rho)\left(4 x-4 x^{2}-\rho\right)}-\frac{-\rho}{4(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x<0
\end{array},\right. \tag{44}\\
& \tilde{f}_{z}(x, \rho)=\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\begin{array}{rll}
\frac{-2 \rho\left(1-7 x+6 x^{2}\right)-\rho^{2}(1+2 x)}{(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} g_{z \alpha}+\frac{4 x\left(1-3 x+2 x^{2}\right)-\rho\left(2-11 x+12 x^{2}-4 x^{3}\right)-\rho^{2}}{(1-x)(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} \\
+\left[\frac{\rho(4-6 x-\rho)}{2(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{2-4 x+4 x^{2}-5 x \rho+2 x^{2} \rho+\rho^{2}}{\left.2(1-x)(1-\rho)^{5 / 2}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}}}\right. & x>1 \\
\frac{-2+2 x-\rho(1-4 x)}{(1-\rho)^{2}} g_{z \alpha}+\frac{(-1+2 x)(2-3 x+\rho)}{(1-x)(1-\rho)^{2}} & x \\
+\left[\frac{\rho(4-6 x-\rho)}{2(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{\left.2-4 x+4 x^{2}-5 x \rho+2 x^{2} \rho+\rho^{2}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}}}{2(1-x)(1-\rho)^{5 / 2}}\right] & 0<x<1 \\
-\frac{-2 \rho\left(1-7 x+6 x^{2}\right)-\rho^{2}(1+2 x)}{(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} g_{z \alpha}-\frac{4 x\left(1-3 x+2 x^{2}\right)-\rho\left(2-11 x+12 x^{2}-4 x^{3}\right)-\rho^{2}}{(1-x)(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} & \\
-\left[\frac{\rho(4-6 x-\rho)}{2(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{\left.\left.2-4 x+4 x^{2}-5 x \rho+2 x^{2} \rho+\rho^{2}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2(1-x)(1-\rho)^{5 / 2}}\right]}{} \quad x<0\right.
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
& \frac{-4 x \rho\left(3-5 x+2 x^{2}\right)+\rho^{2}\left(4-3 x+4 x^{2}-4 x^{3}\right)-\rho^{3}}{(1-x)(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} g_{z \alpha}+\frac{-2 x \rho(5-6 x)+\rho^{2}(3-2 x)}{(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} \\
& +\left[\frac{-2 \rho\left(1-4 x+2 x^{2}\right)-\rho^{2}\left(2-x+2 x^{2}\right)+\rho^{3}}{2(1-x)(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{-\rho(2-6 x+\rho)}{2(1-\rho)^{5 / 2}}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} \quad x>1 \\
& \tilde{f}_{p}(x, \rho)=\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\begin{array}{ll}
\frac{\rho(1-2 x)(4-3 x-\rho)}{(1-x)(1-\rho)^{2}} g_{z \alpha}+\frac{-2 x+3 \rho-4 x \rho}{(1-\rho)^{2}} & 0<x<1 \\
& +\left[\frac{-\rho\left(2-8 x+4 x^{2}\right)-\rho^{2}\left(2-x+2 x^{2}\right)+\rho^{3}}{2(1-x)(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{-\rho(2-6 x+\rho)}{2(1-\rho)^{5 / 2}}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}}
\end{array} \quad 0<1\right. \\
& +\frac{\alpha_{s} C_{F}}{2 \pi}(1-\tau) \begin{cases}\frac{16 x \rho\left(1-3 x+2 x^{2}\right)+4 x^{2} \rho^{2}(3-2 x)-\rho^{3}(5-2 x)+2 \rho^{4}}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}} g_{z \alpha} & \\
+\frac{\rho(1-2 x)\left[16 x(1-x)-2 \rho\left(1+2 x-2 x^{2}\right)-\rho^{2}\right]}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}}+\frac{-\rho(4-\rho)\left(g_{z \alpha}+1\right)}{4(1-\rho)^{5 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x>1 \\
\frac{\rho(5-2 \rho) g_{z \alpha}+2+\rho}{2(1-\rho)^{2}}+\frac{-\rho(4-\rho)\left(g_{z \alpha}+1\right)}{4(1-\rho)^{5 / 2}} \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} & 0<x<1 \\
-\frac{16 x \rho\left(1-3 x+2 x^{2}\right)+4 x^{2} \rho^{2}(3-2 x)-\rho^{3}(5-2 x)+2 \rho^{4}}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}} g_{z \alpha} & \\
-\frac{\rho(1-2 x)\left[16 x\left(1-x-2 \rho\left(1+2 x-2 x^{2}\right)-\rho^{2}\right]\right.}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}}-\frac{-\rho(4-\rho)\left(g_{z \alpha}+1\right)}{4(1-\rho)^{5 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x<0\end{cases}
\end{aligned}
$$

ξ^{2} be small but not vanishing

Apply OPE to non-local op $\mathcal{O}_{n}(\xi)$

$$
\begin{aligned}
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)= & \sum_{J=0} \sum_{a} W_{n}^{(J, a)}\left(\xi^{2}, \mu^{2}\right) \xi^{\nu_{1}} \cdots \xi^{\nu_{J}} \\
& \times\langle P| \mathcal{O}_{\nu_{1} \cdots \nu_{J}}^{(J, a)}\left(\mu^{2}\right)|P\rangle
\end{aligned}
$$

$\mathcal{O}_{\nu_{1} \cdots \nu_{J}}^{(J, a)}\left(\mu^{2}\right)$ Local, symmetric , traceless op

Figure 3.1.: NLO Feynman diagrams contributing to the Drell-Yan cross section.

Figure 5.1.: LO Feynman diagram contributing to the Drell-Yan process.

Figure 5.3.: Virtual diagram contributing to the Drell-Yan cross section at NLO.

