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PDF [fa/p(x, µ)]: probability that a parton a carries fraction x of proton’s momentum

x = longitudinal parton momentum
longitudinal nucleon momentum =

p+parton

p+nucleon
, where p± = (p0 ± p3)/

√
2

(valid at leading-order of QCD)
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On the importance of (nuclear) PDFs
I information on the structure of proton/nucleus
I description of high-energy heavy ion experiments LHC, RHIC and EIC

Drell-Yan lepton pair production (DY)

l
l′

q2 = −Q2

x ∗ P
A

}
X

Deep Inelastic Scattering (DIS)
I key ingredient for perturbative probes of Quark-Gluon-Plasma (QGP)
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Nuclear modification of F2
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Nuclear modification: free proton vs bound proton
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Determination of PDFs
I determine PDFs from experimental data
I the χ2-function is defined as

χ2 =

N∑
ij

(Di − Ti) (C
−1)ij (Dj − Tj)

I the covariance matrix is constructed from
I total uncorrelated uncertainty σ2

i

I correlated systematic uncertainty σiα from
source α

Cij = σ2
i δij +

S∑
α

σiασjα

Input functional at Q0

DGLAP Evolution to Qi

Observable at Qi

Calculate χ2

Minimization

Experiment

Data at Qi
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nCTEQ nuclear PDFs parametrization
I define nuclear PDFs by extending the proton PDF parametrization to account for A-dependence.
I PDF of nucleus (A - mass, Z - charge, N - number of neutrons)

f
(A,Z)
i (x,Q) =

Z

A
f
p/A
i (x,Q) +

N

A
f
n/A
i (x,Q)

I bound proton PDFs are parametrized at Q0

xf
p/A
i (x,Q0) = c0x

c1(1− x)c2ec3x(1 + ec4x)c5

I bound neutron PDFs are constructed assuming isospin symmetry from bound proton PDFs
I A - dependence

ck → ck(A) ≡ pk + ak
(
1−A−bk

)
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Available data sets

I one of the latest global analyses: EPPS21
nuclear PDFs

I good coverage at mid x

I low coverage at low x and high Q2

I fewer data points compared to proton
I decreased constraining power
I have to rely on assumptions

I assumptions limit the estimation of
uncertainties 1
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K. Eskola et al., arXiv:2112.12462
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Markov chain
Monte Carlo
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Estimation of Errors

Hessian method
I main approximation: likelihood is Gaussian around best fit c0

L(c;D) ∝ exp
(
−1

2
χ2(c, D)

)∣∣∣∣
c0

≈ exp
(
−1

2
4cTH4c

)
⇒ Hij =

1

2

∂2χ2(c)
∂ci∂cj

∣∣∣∣
c0

I find rescaled eigendirections of H
I allow variation of parameters along eigendirections up to some χ2-increase of T

⇒ This defines the error envelopes.

For a recent review see: N. T. Hunt-Smith et al., arXiv:2206.107782
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Gaussian likelihoods
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non-Gaussian likelihoods
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There is a better method...
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Markov chain Monte Carlo representation of the likelihood
I draw random samples from the posterior function to get a form independent representation.

post(c|D) =
1

Z
exp

(
−1

2
χ2(c, D)

)
→ {c1, c2, . . . , cn}

I BUT the samples have to be drawn in such a way that they reproduce the expectation value and
higher modes of the likelihood

E{O(c)} =
1

n

n∑
i=1

O(ci)
!
=

∫
dc post(c|D)O(c)

V {O(c)} =
1

n

n∑
i=1

[
O(ci)− E{O(c)}

]2 !
=

∫
dc post(c|D)

[
O(c)− E{O(c)}

]2
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Markov chain Monte Carlo representation of the likelihood

I posterior distribution too complicated to sample directly
I need clever way to choose Monte Carlo samples

I construct the Monte Carlo samples via a Markov chain

{c1 →c2 → · · · → cn−1 → cn}

with pi(c) =
∫

dc′ pi−1(c′)T (c′, c)

I with the transition kernel T (c, c′)
I has to transform the parameter distribution such that the set

of samples has the desired properties
Andrey Andreyevich Markov
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i = 0

p(c)
post(c|D)

Time series of parameter distributions pi(c).
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i = 0

p(c)
post(c|D)

i = 1 i = 2

i = 3 i = 4 i = 5

Time series of parameter distributions pi(c).
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Reaching the invariant distribution

The invariant distribution has the property

post(c|D) =

∫
dc′ post(c′|D)T (c′, c)

Example: Metropolis-Hastings algorithm

1. Start from state ci
2. Propose new state c̃ from proposal distribution q(c̃, ci)

I usually a multidimensional Gaussian around the current state

3. Accept new state c̃ with probability a(ci, c̃) = min
(
1, post(c̃|D)q(c̃,ci)

post(ci|D)q(ci ,̃c)

)
I T (c, c̃) = q(c, c̃)a(c, c̃) + δ(c − c̃)

[
1−

∫
dc′ q(c, c′)a(c, c′)

]
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Sampling a banana-distribution
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Autocorrelation

I we cannot use the simple equations to
estimate variances and higher modes
I these severely underestimate the true uncertainties

I since every new sample depends on the current
the gain in information is reduced

I this is what is called autocorrelation
I twice the autocorrelation-time τ estimates the

number of links in the chain until the next
independent sample is drawn

severe substructure

autocorrelation at full force

Peter Risse 21



Towards a MCMC investigation of nPDFs

Bridge to Lattice QCD

I lattice QCD has several methods dealing with this problem

I one example is the Gamma method
I this method estimates the autocorrelation time directly from

the chain
I used to enlarge error estimates as to eliminate bias
I or filter the time series to get uncorrelated samples

I other methods: Bootstrap, Jackknife, binning ...

arXiv:hep-lat/0306017
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Filtering based on the Gamma-method
severe substructure

using 300 samples directly

⇒

uniform behaviour

reducing 104 samples to a total of 300
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speed-up of theory
predictions
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Optimizing DIS theory predictions

Factorization in DIS structure functions

Fλ(x,Q
2) =

∑
k

Cλ
k ⊗ fk =

∑
k

∫ 1

χ

dξ
ξ
Cλ

k

(
χ

ξ
,
Q

µ
,
mi

µ
, αs(µ)

)
fk(ξ, µ)

l
l′

q2 = −Q2

x ∗ P

A

X

I Wilson coefficients have a complicated αs expansion
I these are the hard scattering amplitudes

I heavy quark mass effects important at Q ∼ mH

I bulk of experimental data is from DIS
I need fast theory predictions

I older implementations are not well optimized
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DIS mass schemes
Zero Mass Variable Flavor Number Scheme (ZMVFNS)
I consider only quarks below threshold: mq < Q

I neglect all mass terms part of the Wilson coefficients
I do not take phase space constraints into account

I simple but only works far from threshold Q � mq

Fixed Flavor Number Scheme (FFNS)
I treat all quarks as massless except for the heaviest mH

I this mass appears explicitly in the Wilson coefficients

I good results for Q ∼ mH unreliable as Q becomes large
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General Mass Variable Flavor Number Schemes (GMVFNS)

I ’interpolating’ between FFNS and
ZMVFNS

I several choices can be made, resulting
in different schemes:
I ACOT: minimal extension of the MS

renormalisation scheme
I FONLL: interpolating between

schemes with a damping function
I TR-method: requiring smooth

transition at Q = mH

T. Stavreva et al., arXiv: 1203.0282
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APFEL++ – A PDF evolution library in c++

I main author: V. Bertone

I rewrite of the Fortran APFEL code
I used by the NNPDF collaboration

I focus on fast and memory efficient
implementations

I codes that use APFEL++
I nCTEQ++
I xFitter
I NangaParbat
I MontBlanc
I PARTONS

Features:
I DGLAP evolution equations
I Deep Inelastic Scattering with or without mass effects
I single-inclusive-annihilation cross sections
I differential semi-inclusive DIS
I Drell-Yan cross sections

https://github.com/vbertone/apfelxx, arXiv: 1708.00911
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Available schemes in APFEL++
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Available schemes in APFEL++ (new)
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Available schemes in APFEL++

I very good agreement with old
implementation in all kinematic
regions
I compared to the nCTEQ++ code

I speed-up to current implementation:
O(100)

I a chain with ∼ 104 samples is
feasible in finite time

I planned: make this available also via
the xFitter code

NC F2 approx sACOT-χ @ N2LO
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Proof of concept
study
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Proof of concept: proton valence PDFs from HERA data

I 10 dimensional proton valence PDF-fit
I experimental data: H1 and ZEUS data

I total: 537 points
I theory prediction: ZMVFNS at NLO from the xFitter

code

Problems:
I not pursued by the authors
I only vague description of technical implementation
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Experimental data sets
I Experimental measurements from the BCDMS

and New Muon Collaboration
I F2 measurements for proton and deuteron:

992 data points after cuts
I approximate deuteron as sum of proton and

neutron
I relate proton and neutron PDFs via isospin

symmetry

invariant mass

W 2 = M2
p +

1− x

x
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Fitting setup

up- and down-valence distributions: valence = quark - anti-quark

xf(x,Q0) = c0x
c1(1− x)c2ec3x(1 + ec4x)c5

uv → {c1, c2, c3, c4, c5}
dv → {c1, c2, c3, c4, c5}

I 992 experimental data points, 10 parameters to fit
I proposal algorithm:

?
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Choosing the proposal distribution – Adaptive Metropolis-Hastings
1. Use normal random walk Metropolis-Hastings until N0 samples have been obtained

I proposal distribution: multivariate Gaussian

c̃i+1 proposed from q(c̃i+1, ci) = N (ci, C0) with C0 : covariance matrix from user input

2. switch to a self learning proposal distribution

c̃i+1 proposed from q(c̃i+1, ci) = (1− β)N
(
ci, scale · Ci

)
+ βN (ci, C0)

with self learned Ci

I 0 ≤ β ≤ 1 controls the impact of the ’learned’ proposal
3. reset self learned proposal distribution to boost convergence

I this reduces the impact of the starting point
H. Haario et al.: “An adaptive Metropolis algorithm”, Bernoulli 7.2 (Apr. 2001)
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Fitting setup

up- and down-valence distributions: valence = quark - anti-quark

xf(x,Q0) = c0x
c1(1− x)c2ec3x(1 + ec4x)c5

uv → {c1, c2, c3, c4, c5}
dv → {c1, c2, c3, c4, c5}

I 992 experimental data points, 10 parameters to fit
I proposal algorithm: Adaptive Metropolis-Hastings with 3x resets
I one very long run: 30,000 samples

I convergence after 20,000 samples → 10,000 analysable samples
I computing time: 6.5 days

I implemented within the nCTEQ++ code
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Burn-in phase

user input

self learned
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Converged part of the chain
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Pairwise correlations
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Results
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Conclusion
I existing error PDF estimation is limited

I parameter distributions need to be close to a Gaussian

I Markov Chain Monte Carlo algorithms are able to access errors without any approximation of the
posterior distribution

I the autocorrelation in the parameter samples can be tackled
I a better proposal distribution
I the Gamma-method (from lattice QCD)

I a speed-up of calculations can be done by griding the required observables in beforehand
I big update on the heavy quark schemes in apfel++

I a successful proof of concept study
I 10 parameter fit for proton valence distributions
I experimental data from DIS
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backup
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Estimation of Errors
Data resampling
I create a set of pseudodata replicas

multidimensional Gaussian with mean and uncertainties from original data
I obtain maximum likelihood estimation (i.e. minimize χ2) for each replica
I best estimate and standard deviation from

E{O(c)} =
1

nrep

nrep∑
O(crep)

V {O(c)} =
1

nrep

nrep∑
[O(crep)− E{O(c)}]2

I works best if the likelihood is Gaussian around the best fit

For a recent review see: N. T. Hunt-Smith et al., arXiv:2206.107782
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Speed-up of theoretical predictions – Hadron collider

σpp→X =

partons∑
s

∑
p

∫
dx1dx2 σ̂

(s)(p)αp
s(Q

2)F (s)(x1, x2, Q
2) , F (s) =

∑
ij

fi(x1, Q
2)fj(x2, Q

2)

I computationally expensive double integrals
I increasing amount of experimental observables
I solution APPLgrid

I interpolate the PDFs
I precompute the integrals by including the interpolating

functions as grids
I now convolute grids with any pdf to get prediction

T. Carli, D. Clements et al., arXiv:0911.2985
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Speed-up of theoretical predictions – Hadron collider
I APPLgrid is still too slow for several reasons

I convolution of the grid with the PDFs is not well optimized
I before one can convolute one has to compute the DGLAP evolution to get the PDFs at every Q

I solution fast convolution tables (FK-tables) by
APFELgrid
I combines APPLgrid tables with DGLAP-evolution tables

I only need the PDFs at Q0

I well optimized by making use of vectorisation and
multiprocessing

I possible speed-up compared to APPLgrid: O(2)−O(103)

V. Bertone et al., arXiv:1605.02070
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